Golang和Lua相遇会发生什么

这篇文章主要讲解了“Golang和Lua相遇会发生什么”,文中的讲解内容简单清晰,易于学习与理解,下面请大家跟着小编的思路慢慢深入,一起来研究和学习“Golang和Lua相遇会发生什么”吧!

创新互联公司是一家专注于成都网站设计、成都网站建设、外贸网站建设与策划设计,桐梓网站建设哪家好?创新互联公司做网站,专注于网站建设10余年,网设计领域的专业建站公司;建站业务涵盖:桐梓等地区。桐梓做网站价格咨询:18982081108

在 GitHub 玩耍时,偶然发现了 gopher-lua ,这是一个纯 Golang 实现的 Lua 虚拟机。我们知道 Golang 是静态语言,而 Lua 是动态语言,Golang 的性能和效率各语言中表现得非常不错,但在动态能力上,肯定是无法与 Lua 相比。那么如果我们能够将二者结合起来,就能综合二者各自的长处了(手动滑稽。

在项目 Wiki 中,我们可以知道 gopher-lua 的执行效率和性能仅比 C 实现的 bindings 差。因此从性能方面考虑,这应该是一款非常不错的虚拟机方案。

Hello World

这里给出了一个简单的 Hello World 程序。我们先是新建了一个虚拟机,随后对其进行了 DoString(...) 解释执行 lua 代码的操作,最后将虚拟机关闭。执行程序,我们将在命令行看到 "Hello World" 的字符串。

package main
import (
"github.com/yuin/gopher-lua"
)
func main() {
l := lua.NewState()
defer l.Close()
if err := l.DoString(`print("Hello World")`); err != nil {
panic(err)
}
}
// Hello World

提前编译

在查看上述 DoString(...) 方法的调用链后,我们发现每执行一次 DoString(...) 或 DoFile(...) ,都会各执行一次 parse 和 compile 。

func (ls *LState) DoString(source string) error {
if fn, err := ls.LoadString(source); err != nil {
return err
} else {
ls.Push(fn)
return ls.PCall(0, MultRet, nil)
}
}
func (ls *LState) LoadString(source string) (*LFunction, error) {
return ls.Load(strings.NewReader(source), "")
}
func (ls *LState) Load(reader io.Reader, name string) (*LFunction, error) {
chunk, err := parse.Parse(reader, name)
// ...
proto, err := Compile(chunk, name)
// ...
}

从这一点考虑,在同份 Lua 代码将被执行多次(如在 http server 中,每次请求将执行相同 Lua 代码)的场景下,如果我们能够对代码进行提前编译,那么应该能够减少 parse 和 compile 的开销(如果这属于 hotpath 代码)。根据 Benchmark 结果,提前编译确实能够减少不必要的开销。

package glua_test
import (
"bufio"
"os"
"strings"
lua "github.com/yuin/gopher-lua"
"github.com/yuin/gopher-lua/parse"
)
// 编译 lua 代码字段
func CompileString(source string) (*lua.FunctionProto, error) {
reader := strings.NewReader(source)
chunk, err := parse.Parse(reader, source)
if err != nil {
return nil, err
}
proto, err := lua.Compile(chunk, source)
if err != nil {
return nil, err
}
return proto, nil
}
// 编译 lua 代码文件
func CompileFile(filePath string) (*lua.FunctionProto, error) {
file, err := os.Open(filePath)
defer file.Close()
if err != nil {
return nil, err
}
reader := bufio.NewReader(file)
chunk, err := parse.Parse(reader, filePath)
if err != nil {
return nil, err
}
proto, err := lua.Compile(chunk, filePath)
if err != nil {
return nil, err
}
return proto, nil
}
func BenchmarkRunWithoutPreCompiling(b *testing.B) {
l := lua.NewState()
for i := 0; i < b.N; i++ {
_ = l.DoString(`a = 1 + 1`)
}
l.Close()
}
func BenchmarkRunWithPreCompiling(b *testing.B) {
l := lua.NewState()
proto, _ := CompileString(`a = 1 + 1`)
lfunc := l.NewFunctionFromProto(proto)
for i := 0; i < b.N; i++ {
l.Push(lfunc)
_ = l.PCall(0, lua.MultRet, nil)
}
l.Close()
}
// goos: darwin
// goarch: amd64
// pkg: glua
// BenchmarkRunWithoutPreCompiling-8         100000             19392 ns/op           85626 B/op         67 allocs/op
// BenchmarkRunWithPreCompiling-8           1000000              1162 ns/op            2752 B/op          8 allocs/op
// PASS
// ok      glua    3.328s

虚拟机实例池

在同份 Lua 代码被执行的场景下,除了可使用提前编译优化性能外,我们还可以引入虚拟机实例池。

因为新建一个 Lua 虚拟机会涉及到大量的内存分配操作,如果采用每次运行都重新创建和销毁的方式的话,将消耗大量的资源。引入虚拟机实例池,能够复用虚拟机,减少不必要的开销。

func BenchmarkRunWithoutPool(b *testing.B) {
for i := 0; i < b.N; i++ {
l := lua.NewState()
_ = l.DoString(`a = 1 + 1`)
l.Close()
}
}
func BenchmarkRunWithPool(b *testing.B) {
pool := newVMPool(nil, 100)
for i := 0; i < b.N; i++ {
l := pool.get()
_ = l.DoString(`a = 1 + 1`)
pool.put(l)
}
}
// goos: darwin
// goarch: amd64
// pkg: glua
// BenchmarkRunWithoutPool-8          10000            129557 ns/op          262599 B/op        826 allocs/op
// BenchmarkRunWithPool-8            100000             19320 ns/op           85626 B/op         67 allocs/op
// PASS
// ok      glua    3.467s

Benchmark 结果显示,虚拟机实例池的确能够减少很多内存分配操作。

下面给出了 README 提供的实例池实现,但注意到该实现在初始状态时,并未创建足够多的虚拟机实例(初始时,实例数为0),以及存在 slice 的动态扩容问题,这都是值得改进的地方。

type lStatePool struct {
    m     sync.Mutex
    saved []*lua.LState
}
func (pl *lStatePool) Get() *lua.LState {
    pl.m.Lock()
    defer pl.m.Unlock()
    n := len(pl.saved)
    if n == 0 {
        return pl.New()
    }
    x := pl.saved[n-1]
    pl.saved = pl.saved[0 : n-1]
    return x
}
func (pl *lStatePool) New() *lua.LState {
    L := lua.NewState()
    // setting the L up here.
    // load scripts, set global variables, share channels, etc...
    return L
}
func (pl *lStatePool) Put(L *lua.LState) {
    pl.m.Lock()
    defer pl.m.Unlock()
    pl.saved = append(pl.saved, L)
}
func (pl *lStatePool) Shutdown() {
    for _, L := range pl.saved {
        L.Close()
    }
}
// Global LState pool
var luaPool = &lStatePool{
    saved: make([]*lua.LState, 0, 4),
}

模块调用

gopher-lua 支持 Lua 调用 Go 模块,个人觉得,这是一个非常令人振奋的功能点,因为在 Golang 程序开发中,我们可能设计出许多常用的模块,这种跨语言调用的机制,使得我们能够对代码、工具进行复用。

当然,除此之外,也存在 Go 调用 Lua 模块,但个人感觉后者是没啥必要的,所以在这里并没有涉及后者的内容。

package main
import (
"fmt"
lua "github.com/yuin/gopher-lua"
)
const source = `
local m = require("gomodule")
m.goFunc()
print(m.name)
`
func main() {
L := lua.NewState()
defer L.Close()
L.PreloadModule("gomodule", load)
if err := L.DoString(source); err != nil {
panic(err)
}
}
func load(L *lua.LState) int {
mod := L.SetFuncs(L.NewTable(), exports)
L.SetField(mod, "name", lua.LString("gomodule"))
L.Push(mod)
return 1
}
var exports = map[string]lua.LGFunction{
"goFunc": goFunc,
}
func goFunc(L *lua.LState) int {
fmt.Println("golang")
return 0
}
// golang
// gomodule

变量污染

当我们使用实例池减少开销时,会引入另一个棘手的问题:由于同一个虚拟机可能会被多次执行同样的 Lua 代码,进而变动了其中的全局变量。如果代码逻辑依赖于全局变量,那么可能会出现难以预测的运行结果(这有点数据库隔离性中的“不可重复读”的味道)。

全局变量

如果我们需要限制 Lua 代码只能使用局部变量,那么站在这个出发点上,我们需要对全局变量做出限制。那问题来了,该如何实现呢?

我们知道,Lua 是编译成字节码,再被解释执行的。那么,我们可以在编译字节码的阶段中,对全局变量的使用作出限制。在查阅完 Lua 虚拟机指令后,发现涉及到全局变量的指令有两条:GETGLOBAL(Opcode 5)和 SETGLOBAL(Opcode 7)。

到这里,已经有了大致的思路:我们可通过判断字节码是否含有 GETGLOBAL 和 SETGLOBAL 进而限制代码的全局变量的使用。至于字节码的获取,可通过调用 CompileString(...) 和 CompileFile(...) ,得到 Lua 代码的 FunctionProto ,而其中的 Code 属性即为字节码 slice,类型为 []uint32 。

在虚拟机实现代码中,我们可以找到一个根据字节码输出对应 OpCode 的工具函数。

// 获取对应指令的 OpCode
func opGetOpCode(inst uint32) int {
return int(inst >> 26)
}

有了这个工具函数,我们即可实现对全局变量的检查。

package main
// ...
func CheckGlobal(proto *lua.FunctionProto) error {
for _, code := range proto.Code {
switch opGetOpCode(code) {
case lua.OP_GETGLOBAL:
return errors.New("not allow to access global")
case lua.OP_SETGLOBAL:
return errors.New("not allow to set global")
}
}
// 对嵌套函数进行全局变量的检查
for _, nestedProto := range proto.FunctionPrototypes {
if err := CheckGlobal(nestedProto); err != nil {
return err
}
}
return nil
}
func TestCheckGetGlobal(t *testing.T) {
l := lua.NewState()
proto, _ := CompileString(`print(_G)`)
if err := CheckGlobal(proto); err == nil {
t.Fail()
}
l.Close()
}
func TestCheckSetGlobal(t *testing.T) {
l := lua.NewState()
proto, _ := CompileString(`_G = {}`)
if err := CheckGlobal(proto); err == nil {
t.Fail()
}
l.Close()
}

模块

除变量可能被污染外,导入的 Go 模块也有可能在运行期间被篡改。因此,我们需要一种机制,确保导入到虚拟机的模块不被篡改,即导入的对象是只读的。

在查阅相关博客后,我们可以对 Table 的 __newindex 方法的修改,将模块设置为只读模式。

package main
import (
"fmt"
"github.com/yuin/gopher-lua"
)
// 设置表为只读
func SetReadOnly(l *lua.LState, table *lua.LTable) *lua.LUserData {
ud := l.NewUserData()
mt := l.NewTable()
// 设置表中域的指向为 table
l.SetField(mt, "__index", table)
// 限制对表的更新操作
l.SetField(mt, "__newindex", l.NewFunction(func(state *lua.LState) int {
state.RaiseError("not allow to modify table")
return 0
}))
ud.Metatable = mt
return ud
}
func load(l *lua.LState) int {
mod := l.SetFuncs(l.NewTable(), exports)
l.SetField(mod, "name", lua.LString("gomodule"))
// 设置只读
l.Push(SetReadOnly(l, mod))
return 1
}
var exports = map[string]lua.LGFunction{
"goFunc": goFunc,
}
func goFunc(l *lua.LState) int {
fmt.Println("golang")
return 0
}
func main() {
l := lua.NewState()
l.PreloadModule("gomodule", load)
    // 尝试修改导入的模块
if err := l.DoString(`local m = require("gomodule");m.name = "hello world"`); err != nil {
fmt.Println(err)
}
l.Close()
}
// :1: not allow to modify table

感谢各位的阅读,以上就是“Golang和Lua相遇会发生什么”的内容了,经过本文的学习后,相信大家对Golang和Lua相遇会发生什么这一问题有了更深刻的体会,具体使用情况还需要大家实践验证。这里是创新互联,小编将为大家推送更多相关知识点的文章,欢迎关注!


当前文章:Golang和Lua相遇会发生什么
转载注明:http://scyanting.com/article/jescps.html