好用的Python技巧有哪些

这篇文章主要讲解了“好用的Python技巧有哪些”,文中的讲解内容简单清晰,易于学习与理解,下面请大家跟着小编的思路慢慢深入,一起来研究和学习“好用的Python技巧有哪些”吧!

成都创新互联公司是专业的乐都网站建设公司,乐都接单;提供成都做网站、网站建设,网页设计,网站设计,建网站,PHP网站建设等专业做网站服务;采用PHP框架,可快速的进行乐都网站开发网页制作和功能扩展;专业做搜索引擎喜爱的网站,专业的做网站团队,希望更多企业前来合作!

1、对输入的字符串“消毒”

对用户输入的内容“消毒”,这问题几乎适用于你编写的所有程序。通常将字符转换为小写或大写就足够了,有时你还可以使用正则表达式来完成工作,但是对于复杂的情况,还有更好的方法:

user_input = "This\nstring has\tsome whitespaces...\r\n"  character_map = {  ord('\n') : ' ',  ord('\t') : ' ',  ord('\r') : None } user_input.translate(character_map)  # This string has some whitespaces... "

在此示例中,你可以看到空格字符“ \n”和“ \t”被单个空格替换了,而“  \r”则被完全删除。这是一个简单的示例,但是我们可以更进一步,使用unicodedata 库及其 combining()  函数,来生成更大的重映射表(remapping table),并用它来删除字符串中所有的重音。

2、对迭代器切片

如果你尝试直接对迭代器切片,则会得到 TypeError ,提示说该对象不可取下标(not  subscriptable),但是有一个简单的解决方案:

import itertools  s = itertools.islice(range(50), 10, 20)  #  for val in s:  ...

使用itertools.islice,我们可以创建一个 islice  对象,该对象是一个迭代器,可以生成我们所需的内容。但是这有个重要的提醒,即它会消耗掉切片前以及切片对象 islice 中的所有元素。

(译注:更多关于迭代器切片的内容,可阅读Python进阶:迭代器与迭代器切片)

3、跳过可迭代对象的开始

有时候你必须处理某些文件,它们以可变数量的不需要的行(例如注释)为开头。itertools 再次提供了简单的解决方案:

string_from_file = """ // Author: ... // License: ... // // Date: ...  Actual content... """  import itertools  for line in itertools.dropwhile(lambda line:line.startswith("//"), string_from_file.split("\n")):     print(line)

这段代码仅会打印在初始的注释部分之后的内容。如果我们只想丢弃迭代器的开头部分(在此例中是注释),并且不知道有多少内容,那么此方法很有用。

4、仅支持关键字参数(kwargs)的函数

当需要函数提供(强制)更清晰的参数时,创建仅支持关键字参数的函数,可能会挺有用:

def test(*, a, b):  pass  test("value for a", "value for b")  # TypeError: test() takes 0 positional arguments... test(a="value", b="value 2")  # Works...

如你所见,可以在关键字参数之前,放置单个 * 参数来轻松解决此问题。如果我们将位置参数放在 * 参数之前,则显然也可以有位置参数。

5、创建支持 with 语句的对象

我们都知道如何使用 with  语句,例如打开文件或者是获取锁,但是我们可以实现自己的么?是的,我们可以使用__enter__ 和__exit__ 方法来实现上下文管理器协议:

class Connection:  def __init__(self):   ...   def __enter__(self):   # Initialize connection...   def __exit__(self, type, value, traceback):   # Close connection...  with Connection() as c:  # __enter__() executes  ...  # conn.__exit__() executes

这是在 Python 中实现上下文管理的最常见方法,但是还有一种更简单的方法:

from contextlib import contextmanager  @contextmanager def tag(name):  print(f"<{name}>")  yield  print(f"")  with tag("h2"):  print("This is Title.")

上面的代码段使用 contextmanager 装饰器实现了内容管理协议。tag 函数的第一部分(yield 之前)会在进入 with  语句时执行,然后执行 with 的代码块,最后会执行 tag 函数的剩余部分。

6、用__slots__节省内存

如果你曾经编写过一个程序,该程序创建了某个类的大量实例,那么你可能已经注意到你的程序突然就需要大量内存。那是因为  Python 使用字典来表示类实例的属性,这能使其速度变快,但内存不是很高效。通常这不是个问题,但是,如果你的程序遇到了问题,你可以尝试使用__slots__  :

class Person:     __slots__ = ["first_name", "last_name", "phone"]     def __init__(self, first_name, last_name, phone):     self.first_name = first_name     self.last_name = last_name     self.phone = phone

这里发生的是,当我们定义__slots__属性时,Python  使用固定大小的小型数组,而不是字典,这大大减少了每个实例所需的内存。使用__slots__还有一些缺点——我们无法声明任何新的属性,并且只能使用在__slots__中的属性。同样,带有__slots__的类不能使用多重继承。

7、限制CPU和内存使用量

如果不是想优化程序内存或 CPU 使用率,而是想直接将其限制为某个固定数字,那么 Python 也有一个库能做到:

import signal import resource import os  # To Limit CPU time def time_exceeded(signo, frame):  print("CPU exceeded...")  raise SystemExit(1)  def set_max_runtime(seconds):  # Install the signal handler and set a resource limit  soft, hard = resource.getrlimit(resource.RLIMIT_CPU)  resource.setrlimit(resource.RLIMIT_CPU, (seconds, hard))  signal.signal(signal.SIGXCPU, time_exceeded)  # To limit memory usage def set_max_memory(size):  soft, hard = resource.getrlimit(resource.RLIMIT_AS)  resource.setrlimit(resource.RLIMIT_AS, (size, hard))

在这里,我们可以看到两个选项,可设置最大 CPU 运行时间和内存使用上限。对于 CPU  限制,我们首先获取该特定资源(RLIMIT_CPU)的软限制和硬限制,然后通过参数指定的秒数和先前获取的硬限制来设置它。最后,如果超过 CPU  时间,我们将注册令系统退出的信号。至于内存,我们再次获取软限制和硬限制,并使用带有 size 参数的setrlimit 和获取的硬限制对其进行设置。

8、控制可以import的内容

某些语言具有非常明显的用于导出成员(变量、方法、接口)的机制,例如Golang,它仅导出以大写字母开头的成员。另一方面,在  Python 中,所有内容都会被导出,除非我们使用__all__ :

def foo():  pass  def bar():  pass  __all__ = ["bar"]

使用上面的代码段,我们可以限制from some_module import * 在使用时可以导入的内容。对于以上示例,通配导入时只会导入  bar。此外,我们可以将__all__ 设为空,令其无法导出任何东西,并且在使用通配符方式从此模块中导入时,将引发 AttributeError。

9、比较运算符的简便方法

为一个类实现所有比较运算符可能会很烦人,因为有很多的比较运算符——__lt__、__le__、__gt__  或__ge__。但是,如果有更简单的方法呢?functools.total_ordering 可救场:

from functools import total_ordering  @total_ordering class Number:  def __init__(self, value):   self.value = value   def __lt__(self, other):   return self.value < other.value   def __eq__(self, other):   return self.value == other.value  print(Number(20) > Number(3)) print(Number(1) < Number(5)) print(Number(15) >= Number(15)) print(Number(10) <= Number(2))

这到底如何起作用的?total_ordering 装饰器用于简化为我们的类实例实现排序的过程。只需要定义__lt__  和__eq__,这是最低的要求,装饰器将映射剩余的操作——它为我们填补了空白。

10、使用slice函数命名切片

使用大量硬编码的索引值会很快搞乱维护性和可读性。一种做法是对所有索引值使用常量,但是我们可以做得更好:

# ID   First Name   Last Name line_record = "2        John         Smith"  ID = slice(0, 8) FIRST_NAME = slice(9, 21) LAST_NAME = slice(22, 27)  name = f"{line_record[FIRST_NAME].strip()} {line_record[LAST_NAME].strip()}" # name == "John Smith"

在此例中,我们可以避免神秘的索引,方法是先使用 slice 函数命名它们,然后再使用它们。你还可以通过 .start、.stop和 .stop  属性,来了解 slice 对象的更多信息。

11、在运行时提示用户输入密码

许多命令行工具或脚本需要用户名和密码才能操作。因此,如果你碰巧写了这样的程序,你可能会发现 getpass  模块很有用:

import getpass  user = getpass.getuser() password = getpass.getpass() # Do Stuff...

这个非常简单的包通过提取当前用户的登录名,可以提示用户输入密码。但是须注意,并非每个系统都支持隐藏密码。Python  会尝试警告你,因此切记在命令行中阅读警告信息。

12、查找单词/字符串的相近匹配

现在,关于 Python 标准库中一些晦涩难懂的特性。如果你发现自己需要使用Levenshtein distance  【2】之类的东西,来查找某些输入字符串的相似单词,那么 Python 的 difflib 会为你提供支持。

import difflib difflib.get_close_matches('appel', ['ape', 'apple', 'peach', 'puppy'], n=2) # returns ['apple', 'ape']

difflib.get_close_matches 会查找最佳的“足够好”的匹配。在这里,第一个参数与第二个参数匹配。我们还可以提供可选参数 n  ,该参数指定要返回的最多匹配结果。另一个可选的关键字参数 cutoff (默认值为 0.6),可以设置字符串匹配得分的阈值。

13、使用IP地址

如果你必须使用 Python 做网络开发,你可能会发现 ipaddress 模块非常有用。一种场景是从 CIDR(无类别域间路由  Classless Inter-Domain Routing)生成一系列 IP 地址:

import ipaddress net = ipaddress.ip_network('74.125.227.0/29')  # Works for IPv6 too # IPv4Network('74.125.227.0/29')  for addr in net:     print(addr)  # 74.125.227.0 # 74.125.227.1 # 74.125.227.2 # 74.125.227.3 # ...

另一个不错的功能是检查 IP 地址的网络成员资格:

ip = ipaddress.ip_address("74.125.227.3")  ip in net # True  ip = ipaddress.ip_address("74.125.227.12") ip in net # False

还有很多有趣的功能,在这里【3】可以找到,我不再赘述。但是请注意,ipaddress 模块和其它与网络相关的模块之间只有有限的互通性。例如,你不能将  IPv4Network 实例当成地址字符串——需要先使用 str 转换它们。

14、在Shell中调试程序崩溃

如果你是一个拒绝使用 IDE,并在 Vim 或 Emacs 中进行编码的人,那么你可能会遇到这样的情况:拥有在 IDE  中那样的调试器会很有用。

你知道吗?你有一个——只要用python3.8 -i 运行你的程序——一旦你的程序终止了, -i 会启动交互式  shell,在那你可以查看所有的变量和调用函数。整洁,但是使用实际的调试器(pdb )会如何呢?让我们用以下程序(script.py ):

def func():     return 0 / 0  func()

并使用python3.8 -i script.py运行脚本:

# Script crashes... Traceback (most recent call last):   File "script.py", line 4, in      func()   File "script.py", line 2, in func     return 0 / 0 ZeroDivisionError: division by zero >>> import pdb >>> pdb.pm()  # Post-mortem debugger > script.py(2)func() -> return 0 / 0 (Pdb)

我们看到了崩溃的地方,现在让我们设置一个断点:

def func():     breakpoint()  # import pdb; pdb.set_trace()     return 0 / 0  func()

现在再次运行它:

script.py(3)func() -> return 0 / 0 (Pdb)  # we start here (Pdb) step ZeroDivisionError: division by zero > script.py(3)func() -> return 0 / 0 (Pdb)

大多数时候,打印语句和错误信息就足以进行调试,但是有时候,你需要四处摸索,以了解程序内部正在发生的事情。在这些情况下,你可以设置断点,然后程序执行时将在断点处停下,你可以检查程序,例如列出函数参数、表达式求值、列出变量、或如上所示仅作单步执行。

pdb 是功能齐全的 Python shell,理论上你可以执行任何东西,但是你还需要一些调试命令,可在此处【4】找到。

15、在一个类中定义多个构造函数

函数重载是编程语言(不含  Python)中非常常见的功能。即使你不能重载正常的函数,你仍然可以使用类方法重载构造函数:

import datetime  class Date:     def __init__(self, year, month, day):         self.year = year         self.month = month         self.day = day      @classmethod     def today(cls):         t = datetime.datetime.now()         return cls(t.year, t.month, t.day)  d = Date.today() print(f"{d.day}/{d.month}/{d.year}") # 14/9/2019

你可能倾向于将替代构造函数的所有逻辑放入__init__,并使用*args 、**kwargs 和一堆 if  语句,而不是使用类方法来解决。那可能行得通,但是却变得难以阅读和维护。

因此,我建议将很少的逻辑放入__init__,并在单独的方法/构造函数中执行所有操作。这样,对于类的维护者和用户而言,得到的都是干净的代码。

16、使用装饰器缓存函数调用

你是否曾经编写过一种函数,它执行昂贵的 I/O  操作或一些相当慢的递归,而且该函数可能会受益于对其结果进行缓存(存储)?如果你有,那么有简单的解决方案,即使用 functools 的lru_cache  :

from functools import lru_cache import requests  @lru_cache(maxsize=32) def get_with_cache(url):     try:         r = requests.get(url)         return r.text     except:         return "Not Found"   for url in ["https://google.com/",             "https://martinheinz.dev/",             "https://reddit.com/",             "https://google.com/",             "https://dev.to/martinheinz",             "https://google.com/"]:     get_with_cache(url)  print(get_with_cache.cache_info()) # CacheInfo(hits=2, misses=4, maxsize=32, currsize=4)

在此例中,我们用了可缓存的 GET 请求(最多 32 个缓存结果)。你还可以看到,我们可以使用 cache_info  方法检查函数的缓存信息。装饰器还提供了 clear_cache 方法,用于使缓存结果无效。

我还想指出,此函数不应与具有副作用的函数一起使用,或与每次调用都创建可变对象的函数一起使用。

17、在可迭代对象中查找最频繁出现的元素

在列表中查找最常见的元素是非常常见的任务,你可以使用 for 循环和字典(map),但是这没必要,因为  collections 模块中有 Counter 类:

from collections import Counter  cheese = ["gouda", "brie", "feta", "cream cheese", "feta", "cheddar",           "parmesan", "parmesan", "cheddar", "mozzarella", "cheddar", "gouda",           "parmesan", "camembert", "emmental", "camembert", "parmesan"]  cheese_count = Counter(cheese) print(cheese_count.most_common(3)) # Prints: [('parmesan', 4), ('cheddar', 3), ('gouda', 2)]

实际上,Counter 只是一个字典,将元素与出现次数映射起来,因此你可以将其用作普通字典:

python print(cheese_count["mozzarella"]) ¨K40K cheese_count["mozzarella"] +=  1 print(cheese_count["mozzarella"]) ¨K41K

除此之外,你还可以使用 update(more_words) 方法轻松添加更多元素。Counter  的另一个很酷的特性是你可以使用数学运算(加法和减法)来组合和减去 Counter 的实例。

感谢各位的阅读,以上就是“好用的Python技巧有哪些”的内容了,经过本文的学习后,相信大家对好用的Python技巧有哪些这一问题有了更深刻的体会,具体使用情况还需要大家实践验证。这里是创新互联,小编将为大家推送更多相关知识点的文章,欢迎关注!


本文标题:好用的Python技巧有哪些
浏览地址:http://scyanting.com/article/jhhdsj.html