如何进行rt-thread中的压栈与出栈分析
如何进行rt-thread中的压栈与出栈分析,相信很多没有经验的人对此束手无策,为此本文总结了问题出现的原因和解决方法,通过这篇文章希望你能解决这个问题。
成都创新互联公司一直秉承“诚信做人,踏实做事”的原则,不欺瞒客户,是我们最起码的底线! 以服务为基础,以质量求生存,以技术求发展,成交一个客户多一个朋友!为您提供成都做网站、网站制作、成都网页设计、成都小程序开发、成都网站开发、成都网站制作、成都软件开发、成都App定制开发是成都本地专业的网站建设和网站设计公司,等你一起来见证!
rt-thread中的压栈与出栈
1.说明
主要想分析一下rt-thread中线程的压栈与入栈的相关操作。从而更好的掌握线程切换与线程恢复的相关知识。
2.使用场景
首先需要明白的是什么情况下需要进行压栈与出栈的操作?对于这个问题可以做这样的设想,当程序一直做一件事的时候,是顺序执行的,不会有任何干扰。但是此时来了一个中断,那么程序逻辑肯定会优先去处理中断。那么这时需要做哪些事情?
也许这个例子有点脱离实际,讲的通俗明白一些,就是一个人在专注的完成一件事,此时应该是很顺利的进行。但是当事情还没有做完,但是又有一个更加紧急的事情需要你去处理,这时应该怎么做?
对于一个人来讲:
(1)将手里没有做完的事情保留起来,保留当前的进度
(2)将大脑清空,全力完成更加重要的事情
(3)恢复到没有做完的事情的现场,去接着完成没有做完的事情
人的大脑是这样工作的,其实芯片的逻辑也需要这样执行,我们知道芯片如何知道当前程序的状态,无外乎几个重要的寄存器,sp(程序指针寄存器),通用寄存器Rx,以及LR链接寄存器等等。有了这些信息,就可以知道程序当前运行的状态了,这个就是程序的现场。
对于armv7来说,寄存器可以分为以下几种:
在rt-thread操作系统中,涉及到压栈与出栈操作的有两个地方,第一个是中断的进入与中断处理完成后的退出,第二个是线程的切换。
3.简单分析一下rt-thread线程栈的初始化
对于/bsp/qemu-vexpress-a9来说,系统上电后执行rtt的第一行代码在/libcpu/arm/cortex-a/start_gcc.S文件。
然后执行_reset函数,这个函数是汇编函数写的,因为前期没有栈空间,所以代码需要采用汇编指令完成。
然后分配栈空间等等。执行到rtt的其他部分逻辑。这里就不赘述了。这里主要分析的是线程的初始化。
每一个线程在初始化的时候,需要分配栈空间
rt_thread_create/rt_thread_init --> _rt_thread_init --> rt_hw_stack_init
最后调用到了/libcpu/arm/cortex-a/stack.c文件。
rt_uint8_t *rt_hw_stack_init(void *tentry, void *parameter,
rt_uint8_t *stack_addr, void *texit)
{
rt_uint32_t *stk;
stack_addr += sizeof(rt_uint32_t);
stack_addr = (rt_uint8_t *)RT_ALIGN_DOWN((rt_uint32_t)stack_addr, 8);
stk = (rt_uint32_t *)stack_addr;
*(--stk) = (rt_uint32_t)tentry; /* entry point */
*(--stk) = (rt_uint32_t)texit; /* lr */
*(--stk) = 0xdeadbeef; /* r12 */
*(--stk) = 0xdeadbeef; /* r11 */
*(--stk) = 0xdeadbeef; /* r10 */
*(--stk) = 0xdeadbeef; /* r9 */
*(--stk) = 0xdeadbeef; /* r8 */
*(--stk) = 0xdeadbeef; /* r7 */
*(--stk) = 0xdeadbeef; /* r6 */
*(--stk) = 0xdeadbeef; /* r5 */
*(--stk) = 0xdeadbeef; /* r4 */
*(--stk) = 0xdeadbeef; /* r3 */
*(--stk) = 0xdeadbeef; /* r2 */
*(--stk) = 0xdeadbeef; /* r1 */
*(--stk) = (rt_uint32_t)parameter; /* r0 : argument */
/* cpsr */
if ((rt_uint32_t)tentry & 0x01)
*(--stk) = SVCMODE | 0x20; /* thumb mode */
else
*(--stk) = SVCMODE; /* arm mode */
#ifdef RT_USING_LWP
*(--stk) = 0; /* user lr */
*(--stk) = 0; /* user sp*/
#endif
#ifdef RT_USING_FPU
*(--stk) = 0; /* not use fpu*/
#endif
/* return task's current stack address */
return (rt_uint8_t *)stk;
}
初始化线程的时候,每个线程都是有一个栈空间的,这个栈空间不仅仅保存一下参数变量,还在栈地址的首地址处保存了线程执行需要的现场。而且每个线程都有一个独立的栈内存,这个内存就是在栈的入口处。
当线程发生切换的时候,需要取出这些寄存器
.globl rt_thread_switch_interrupt_flag
.globl rt_interrupt_from_thread
.globl rt_interrupt_to_thread
.globl rt_hw_context_switch_interrupt
rt_hw_context_switch_interrupt:
#ifdef RT_USING_SMP
/* r0 :svc_mod context
* r1 :addr of from_thread's sp
* r2 :addr of to_thread's sp
* r3 :to_thread's tcb
*/
str r0, [r1]
ldr sp, [r2]
mov r0, r3
bl rt_cpus_lock_status_restore
b rt_hw_context_switch_exit
执行到rt_hw_context_switch_exit函数
.global rt_hw_context_switch_exit
rt_hw_context_switch_exit:
#ifdef RT_USING_SMP
#ifdef RT_USING_SIGNALS
mov r0, sp
cps #Mode_IRQ
bl rt_signal_check
cps #Mode_SVC
mov sp, r0
#endif
#endif
#ifdef RT_USING_FPU
/* fpu context */
ldmfd sp!, {r6}
vmsr fpexc, r6
tst r6, #(1<<30)
beq 1f
ldmfd sp!, {r5}
vmsr fpscr, r5
vldmia sp!, {d16-d31}
vldmia sp!, {d0-d15}
1:
#endif
#ifdef RT_USING_LWP
ldmfd sp, {r13, r14}^ /* usr_sp, usr_lr */
add sp, #8
#endif
ldmfd sp!, {r1}
msr spsr_cxsf, r1 /* original mode */
ldmfd sp!, {r0-r12,lr,pc}^ /* irq return */
该函数可能看起来有些费劲,我来解释一下大概的内容:
当线程间要从上一个线程切换到下一个线程的时候,首先会将切换之前现场保存起来,也就是将这些寄存器的知保存到内存中,然后将sp指向下线程的地址。此时需要恢复下一个需要切换的线程的寄存器。
如果需要理清楚rt-thread的栈空间的压栈与入栈,其实最根本的问题就是如何去处理现场状态的问题。也就是每个线程都需要有一个独立的栈空间,然后这些栈空间除了保存数据,还需要保存寄存器。当进行任务切换的时候,当前线程的寄存器需要保存该线程的栈内存中,而下个线程的栈空间则会从自己的栈空间的起始地址处恢复。这个就是rt-thread栈运作的实现逻辑。
看完上述内容,你们掌握如何进行rt-thread中的压栈与出栈分析的方法了吗?如果还想学到更多技能或想了解更多相关内容,欢迎关注创新互联行业资讯频道,感谢各位的阅读!
当前文章:如何进行rt-thread中的压栈与出栈分析
标题路径:http://scyanting.com/article/jhogej.html