Numpy的属性与形状变换怎么应用
这篇文章主要讲解了“Numpy的属性与形状变换怎么应用”,文中的讲解内容简单清晰,易于学习与理解,下面请大家跟着小编的思路慢慢深入,一起来研究和学习“Numpy的属性与形状变换怎么应用”吧!
成都创新互联-专业网站定制、快速模板网站建设、高性价比马村网站开发、企业建站全套包干低至880元,成熟完善的模板库,直接使用。一站式马村网站制作公司更省心,省钱,快速模板网站建设找我们,业务覆盖马村地区。费用合理售后完善,10余年实体公司更值得信赖。
一、最基本的属性
在 NumPy中,每一个线性的数组称为是一个轴(axis),也就是维度(dimensions),维度的数量称为秩(rank);比如说,二维数组相当于是两个一维数组,即 二维数组有两个轴,秩为2 。
重点:很多时候可以声明 axis。 axis=0,表示沿着第 0 轴进行操作,即对每一列进行操作; axis=1,表示沿着第 1 轴进行操作,即对每一行进行操作。
二、Numpy 常用属性
Numpy 常用属性 | Numpy 常用属性 |
---|---|
ndarray.ndim | 秩,即轴的数量或维度的数量 |
ndarray.shape | 数组的维度,对于矩阵,n 行 m 列 |
ndarray.size | 数组元素的总个数,相当于 .shape 中 n*m 的值 |
ndarray.dtype | ndarray 对象的元素类型 |
ndarray.itemsize | ndarray 对象中每个元素的大小,以字节为单位 |
ndarray.flags | ndarray 对象的内存信息 |
ndarray.real | ndarray元素的实部 |
ndarray.imag | ndarray 元素的虚部 |
2.1 ndarray.ndim 数组维度
秩,即轴的数量或维度的数量
a = np.array([[1,2,3,4],[5,6,7,8]]) print ('a ndim:',a.ndim) # a ndim: 2
2.2 ndarray.shape 数组形状
数组的维度,对于矩阵,n 行 m 列
a = np.array([[1,2,3,4],[5,6,7,8]]) print ('a ndim:',a.shape) b = a.reshape(4,2) print ('b ndim:',b.shape) # a ndim: (2, 4) # b ndim: (4, 2)
2.3 ndarray.dtype 数组类型
ndarray 对象的元素类型;
a = np.array([[1,2,3,4],[5,6,7,8]],dtype=np.int8) print ('a type:',a.dtype) b = a.astype(np.float16) print ('b type:',b.dtype) # a type: int8 # b type: float16
2.4 ndarray.itemsize 数组元素大小
ndarray 对象中每个元素的大小,以字节为单位
a = np.array([[1,2,3,4],[5,6,7,8]],dtype=np.int8) print ('a itemsize:',a.itemsize) b = a.astype(np.float16) print ('b itemsize:',b.itemsize) # a itemsize: 1 # b itemsize: 2
三、形状变换
常用的形状变换函数如下:
函数名称 | 功能描述 |
---|---|
reshape | 不改变数据的条件下修改数组形状 |
flat | 数组元素迭代器 |
flatten | 返回一份数组拷贝,对拷贝所做的修改不会影响原始数组 |
ravel | 返回展开数组 |
3.1 numpy.reshape 改变形状
不改变数据的条件下修改数组形状 ,函数的格式如下:
numpy.reshape(arr, newshape, order='C')
参数名称 | 含义 |
---|---|
arr | 要修改形状的数组 |
newshape | 整数或者整数数组,新的形状应当兼容原有形状 |
order | 'C' -- 按行,'F' -- 按列,'A' -- 原顺序,'k' -- 元素在内存中的出现顺序。 |
也可以使用如下格式: arr.reshape(newshape, order='C')
,作用与上面的格式完全一致:
举例如下:
a = np.array([[1,2,3,4],[5,6,7,8]]) b = np.reshape(a,(4,2)) c = a.reshape((4,2)) print('a:',a) print('b:',b) print('c:',c)
输出为:
3.2 nparray.flat 返回迭代器
可以返回一个数组的迭代器,举例如下:
a = np.array([[1,2,3,4],[5,6,7,8]]) i = 0 for j in a.flat: i = i + 1 print('第%s个元素为:%s' %(i,j)) # 输出: # 第1个元素为:1 # 第2个元素为:2 # 第3个元素为:3 # 第4个元素为:4 # 第5个元素为:5 # 第6个元素为:6 # 第7个元素为:7 # 第8个元素为:8
3.3 ndarray.flatten & numpy.ravel 平铺展开
两个函数均的功能基本一直,均为展开数组;格式如下:ndarray.flatten(order='C')
numpy.ravel(a, order='C')
参数名称 | 含义 |
---|---|
order | 'C' -- 按行(默认),'F' -- 按列,'A' -- 原顺序(不常用),'K' -- 元素在内存中的出现顺序(不常用) |
举例:
a = np.array([[1,2,3,4],[5,6,7,8]]) b =a.flatten() print(b) # [1 2 3 4 5 6 7 8] c = a.flatten('F') print(c) # [1 5 2 6 3 7 4 8]
不同点为:在赋值时,flatten 不改变原数组,ravel会改变原数组,举例如下: 该特点,在赋值时可以使用;
d = np.array([[1,2,3,4],[5,6,7,8]]) d.flatten()[1]=100 print(d) # 输出:[[1 2 3 4] [5 6 7 8]] d.ravel()[2]=200 print(d) # 输出:[[ 1 2 200 4] [ 5 6 7 8]]
感谢各位的阅读,以上就是“Numpy的属性与形状变换怎么应用”的内容了,经过本文的学习后,相信大家对Numpy的属性与形状变换怎么应用这一问题有了更深刻的体会,具体使用情况还需要大家实践验证。这里是创新互联,小编将为大家推送更多相关知识点的文章,欢迎关注!
标题名称:Numpy的属性与形状变换怎么应用
网页网址:http://scyanting.com/article/jiidgj.html