apache-hive-1.2.1中localmr的示例分析
这篇文章将为大家详细讲解有关apache-hive-1.2.1中local mr的示例分析,小编觉得挺实用的,因此分享给大家做个参考,希望大家阅读完这篇文章后可以有所收获。
创新互联技术团队十载来致力于为客户提供网站建设、成都做网站、品牌网站制作、网络营销推广、搜索引擎SEO优化等服务。经过多年发展,公司拥有经验丰富的技术团队,先后服务、推广了数千家网站,包括各类中小企业、企事单位、高校等机构单位。
在hive中运行sql有很多是比较小的SQL,数据量小,计算量小。这些比较小的SQL 如果也采用分布式的方式来执行,那么就得不偿失,因为SQL真正执行的时间可能只有10s,但是分布式任务生成的其他过程执行可能要1min。这样小任务采用local mr方式执行,就是本地执行,通过把输入数据拉回到客户端来执行
三个参数来决定:
hive.exec.mode.local.auto=true 是否启动本地mr模式
hive.exec.mode.local.auto.input.files.max=4 input files的数量,默认是4个
hive.exec.mode.local.auto.inputbytes.max=134217728 input files的大小,默认是128M
注意:
hive.exec.mode.local.auto是大前提,只有设置为true,才可能会启用local mr模式
hive.exec.mode.local.auto.input.files.max 和 hive.exec.mode.local.auto.inputbytes.max是 与的关系,只有同时满足才会执行local mr
t_1==> 5个文件
t_2==> 2个文件
hive>set hive.exec.mode.local.auto=false hive> select * from t_2 order by id; Query ID = hadoop_20160125132157_d767beb0-f674-4962-ac3c-8fbdd2949d01 Total jobs = 1 Launching Job 1 out of 1 Number of reduce tasks determined at compile time: 1 In order to change the average load for a reducer (in bytes): set hive.exec.reducers.bytes.per.reducer=In order to limit the maximum number of reducers: set hive.exec.reducers.max= In order to set a constant number of reducers: set mapreduce.job.reduces= Starting Job = job_1453706740954_0006, Tracking URL = http://hftest0001.webex.com:8088/proxy/application_1453706740954_0006/ Kill Command = /home/hadoop/hadoop-2.7.1/bin/hadoop job -kill job_1453706740954_0006 Hadoop job information for Stage-1: number of mappers: 1; number of reducers: 1 2016-01-25 13:22:19,210 Stage-1 map = 0%, reduce = 0% 2016-01-25 13:22:26,497 Stage-1 map = 100%, reduce = 0%, Cumulative CPU 1.47 sec 2016-01-25 13:22:40,207 Stage-1 map = 100%, reduce = 100%, Cumulative CPU 3.68 sec MapReduce Total cumulative CPU time: 3 seconds 680 msec Ended Job = job_1453706740954_0006 MapReduce Jobs Launched: Stage-Stage-1: Map: 1 Reduce: 1 Cumulative CPU: 3.68 sec HDFS Read: 5465 HDFS Write: 32 SUCCESS Total MapReduce CPU Time Spent: 3 seconds 680 msec OK ... ... hive>set hive.exec.mode.local.auto=true hive> select * from t_2 order by id; hive> select * from t_2 order by id; Automatically selecting local only mode for query ==> 启动用本地模式 Query ID = hadoop_20160125132322_9649b904-ad87-47fa-89ad-5e5f67315ac8 Total jobs = 1 Launching Job 1 out of 1 Number of reduce tasks determined at compile time: 1 In order to change the average load for a reducer (in bytes): set hive.exec.reducers.bytes.per.reducer= In order to limit the maximum number of reducers: set hive.exec.reducers.max= In order to set a constant number of reducers: set mapreduce.job.reduces= Job running in-process (local Hadoop) 2016-01-25 13:23:27,192 Stage-1 map = 100%, reduce = 100% Ended Job = job_local1850780899_0002 MapReduce Jobs Launched: Stage-Stage-1: HDFS Read: 1464 HDFS Write: 1618252652 SUCCESS Total MapReduce CPU Time Spent: 0 msec OK ... ... hive>set hive.exec.mode.local.auto=true hive> select * from t_1 order by id; Query ID = hadoop_20160125132411_3ecd7ee9-8ccb-4bcc-8582-6d797c13babd Total jobs = 1 Launching Job 1 out of 1 Number of reduce tasks determined at compile time: 1 In order to change the average load for a reducer (in bytes): set hive.exec.reducers.bytes.per.reducer= In order to limit the maximum number of reducers: set hive.exec.reducers.max= In order to set a constant number of reducers: set mapreduce.job.reduces= Cannot run job locally: Number of Input Files (= 5) is larger than hive.exec.mode.local.auto.input.files.max(= 4) ==>5 > 4 还是启用了分布式 Starting Job = job_1453706740954_0007, Tracking URL = http://hftest0001.webex.com:8088/proxy/application_1453706740954_0007/ Kill Command = /home/hadoop/hadoop-2.7.1/bin/hadoop job -kill job_1453706740954_0007 Hadoop job information for Stage-1: number of mappers: 1; number of reducers: 1 2016-01-25 13:24:38,775 Stage-1 map = 0%, reduce = 0% 2016-01-25 13:24:52,115 Stage-1 map = 100%, reduce = 0%, Cumulative CPU 1.55 sec 2016-01-25 13:24:59,548 Stage-1 map = 100%, reduce = 100%, Cumulative CPU 3.84 sec MapReduce Total cumulative CPU time: 3 seconds 840 msec Ended Job = job_1453706740954_0007 MapReduce Jobs Launched: Stage-Stage-1: Map: 1 Reduce: 1 Cumulative CPU: 3.84 sec HDFS Read: 5814 HDFS Write: 56 SUCCESS Total MapReduce CPU Time Spent: 3 seconds 840 msec OK ... ... hive>set hive.exec.mode.local.auto=true hive> set hive.exec.mode.local.auto.input.files.max=5; ==> 设置输入文件数max=5 hive> select * from t_1 order by id; Automatically selecting local only mode for query ==> 启用了本地模式 Query ID = hadoop_20160125132558_db2f4fca-f6bf-4b91-9569-c779a3b13386 Total jobs = 1 Launching Job 1 out of 1 Number of reduce tasks determined at compile time: 1 In order to change the average load for a reducer (in bytes): set hive.exec.reducers.bytes.per.reducer= In order to limit the maximum number of reducers: set hive.exec.reducers.max= In order to set a constant number of reducers: set mapreduce.job.reduces= Job running in-process (local Hadoop) 2016-01-25 13:26:03,232 Stage-1 map = 100%, reduce = 100% Ended Job = job_local264155444_0003 MapReduce Jobs Launched: Stage-Stage-1: HDFS Read: 1920 HDFS Write: 1887961792 SUCCESS Total MapReduce CPU Time Spent: 0 msec OK
关于“apache-hive-1.2.1中local mr的示例分析”这篇文章就分享到这里了,希望以上内容可以对大家有一定的帮助,使各位可以学到更多知识,如果觉得文章不错,请把它分享出去让更多的人看到。
网站题目:apache-hive-1.2.1中localmr的示例分析
标题URL:http://scyanting.com/article/jjephp.html