文本挖掘分词mapreduce化
软件版本
让客户满意是我们工作的目标,不断超越客户的期望值来自于我们对这个行业的热爱。我们立志把好的技术通过有效、简单的方式提供给客户,将通过不懈努力成为客户在信息化领域值得信任、有价值的长期合作伙伴,公司提供的服务项目有:申请域名、虚拟主机、营销软件、网站建设、襄城网站维护、网站推广。
paoding-analysis3.0
项目jar包和拷贝庖丁dic目录到项目的类路径下
修改paoding-analysis.jar下的paoding-dic-home.properties文件设置词典文件路径
paoding.dic.home=classpath:dic
分词程序demo
import java.io.IOException; import java.io.StringReader; import org.apache.lucene.analysis.TokenStream; import org.apache.lucene.analysis.tokenattributes.CharTermAttribute; import net.paoding.analysis.analyzer.PaodingAnalyzer; public class TokenizeWithPaoding { public static void main(String[] args) { String line="中华民族共和国"; PaodingAnalyzer analyzer =new PaodingAnalyzer(); StringReader sr=new StringReader(line); TokenStream ts=analyzer.tokenStream("", sr);//分词流,第一个参数无意义 //迭代分词流 try { while(ts.incrementToken()){ CharTermAttribute ta=ts.getAttribute(CharTermAttribute.class); System.out.println(ta.toString()); } } catch (Exception e) { e.printStackTrace(); } } }
新闻文文本分类源文件
http://people.csail.mit.edu/jrennie/20Newsgroups/20news-bydate.tar.gz
每个文件夹代表一个类别,每个类别下的文件代表一条新闻
中文新闻分类需要先分词
对于大量小文件可以使用FileInputFormat的另一个抽象子类CombineFileInputFormat实现createRecordReader方法
CombineFileInputFormat重写了getSpilt方法,返回的分片类型是CombineFileSpilt,是InputSpilt的子类,可包含多个文件
RecordReader怎么由文件生成key-value是由nextKeyValue函数决定
自定义的CombineFileInputFormat类
package org.conan.myhadoop.fengci; import java.io.IOException; import org.apache.hadoop.fs.Path; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.InputSplit; import org.apache.hadoop.mapreduce.JobContext; import org.apache.hadoop.mapreduce.RecordReader; import org.apache.hadoop.mapreduce.TaskAttemptContext; import org.apache.hadoop.mapreduce.lib.input.CombineFileInputFormat; import org.apache.hadoop.mapreduce.lib.input.CombineFileRecordReader; import org.apache.hadoop.mapreduce.lib.input.CombineFileSplit; /** * 自定义MyInputFormat类, 用于实现一个Split包含多个文件 * @author BOB * */ public class MyInputFormat extends CombineFileInputFormat{ //禁止文件切分 @Override protected boolean isSplitable(JobContext context, Path file) { return false; } @Override public RecordReader createRecordReader(InputSplit split, TaskAttemptContext context) throws IOException { return new CombineFileRecordReader ((CombineFileSplit)split, context, MyRecordReader.class); } }
自定义的RecordReader类
package org.conan.myhadoop.fengci; import java.io.IOException; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.fs.FSDataInputStream; import org.apache.hadoop.fs.FileSystem; import org.apache.hadoop.fs.Path; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.InputSplit; import org.apache.hadoop.mapreduce.RecordReader; import org.apache.hadoop.mapreduce.TaskAttemptContext; import org.apache.hadoop.mapreduce.lib.input.CombineFileSplit; /** * 自定义MyRecordReader类, 用于读取MyInputFormat对象切分的Split分片中的内容 * @author BOB * */ public class MyRecordReader extends RecordReader{ private CombineFileSplit combineFileSplit; //当前处理的分片 private Configuration conf; //作业的配置信息 private Text currentKey = new Text(); //当前读入的key private Text currentValue = new Text(); //当前读入的value private int totalLength; //当前分片中文件的数量 private int currentIndex; //正在读取的文件在当前分片中的位置索引 private float currentProgress = 0F; //当前进度 private boolean processed = false; //标记当前文件是否已经被处理过 //构造方法 public MyRecordReader(CombineFileSplit combineFileSplit, TaskAttemptContext context, Integer fileIndex) { super(); this.combineFileSplit = combineFileSplit; this.currentIndex = fileIndex; this.conf = context.getConfiguration(); this.totalLength = combineFileSplit.getPaths().length; } @Override public void initialize(InputSplit split, TaskAttemptContext context) throws IOException, InterruptedException { } @Override public Text getCurrentKey() throws IOException, InterruptedException { return currentKey; } @Override public Text getCurrentValue() throws IOException, InterruptedException { return currentValue; } @Override public float getProgress() throws IOException, InterruptedException { if(currentIndex >= 0 && currentIndex < totalLength) { return currentProgress = (float) currentIndex/totalLength; } return currentProgress; } @Override public void close() throws IOException { } @Override public boolean nextKeyValue() throws IOException, InterruptedException { if(!processed) { //由文件的父目录, 文件名以及目录分割符组成key Path file = combineFileSplit.getPath(currentIndex); StringBuilder sb = new StringBuilder(); sb.append("/"); sb.append(file.getParent().getName()).append("/"); sb.append(file.getName()); currentKey.set(sb.toString()); //以整个文件的内容作为value FSDataInputStream in = null; byte[] content = new byte[(int)combineFileSplit.getLength(currentIndex)]; FileSystem fs = file.getFileSystem(conf); in = fs.open(file); in.readFully(content); currentValue.set(content); in.close(); processed = true; return true; } return false; } }
分词驱动类
package org.conan.myhadoop.fengci; import java.io.IOException; import java.io.StringReader; import net.paoding.analysis.analyzer.PaodingAnalyzer; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.conf.Configured; import org.apache.hadoop.fs.FileStatus; import org.apache.hadoop.fs.FileSystem; import org.apache.hadoop.fs.FileUtil; import org.apache.hadoop.fs.Path; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.Job; import org.apache.hadoop.mapreduce.Mapper; import org.apache.hadoop.mapreduce.lib.input.FileInputFormat; import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; import org.apache.hadoop.mapreduce.lib.output.SequenceFileOutputFormat; import org.apache.hadoop.util.Tool; import org.apache.hadoop.util.ToolRunner; import org.apache.lucene.analysis.Analyzer; import org.apache.lucene.analysis.TokenStream; import org.apache.lucene.analysis.tokenattributes.CharTermAttribute; /** * 分词驱动器类, 用于给输入文件进行分词 * @author BOB * */ public class TokenizerDriver extends Configured implements Tool{ public static void main(String[] args) throws Exception{ int res = ToolRunner.run(new Configuration(), new TokenizerDriver(), args); System.exit(res); } @Override public int run(String[] args) throws Exception { Configuration conf = new Configuration(); //参数设置 conf.setLong("mapreduce.input.fileinputformat.split.maxsize", 4000000); //作业名称 Job job = new Job(conf,"Tokenizer"); job.setJarByClass(TokenizerDriver.class); job.setMapperClass(Map.class); job.setInputFormatClass(MyInputFormat.class); job.setOutputFormatClass(SequenceFileOutputFormat.class); job.setOutputKeyClass(Text.class); job.setOutputValueClass(Text.class); Path inpath=new Path(args[0]); Path outpath=new Path(args[1]); FileSystem fs = inpath.getFileSystem(conf); FileStatus[] status = fs.listStatus(inpath); Path[] paths = FileUtil.stat2Paths(status); for(Path path : paths) { FileInputFormat.addInputPath(job, path); } FileOutputFormat.setOutputPath(job, outpath); //输出文件夹已经存在则删除 FileSystem hdfs = outpath.getFileSystem(conf); if(hdfs.exists(outpath)){ hdfs.delete(outpath,true); hdfs.close(); } //没有Reduce任务 job.setNumReduceTasks(0); return job.waitForCompletion(true) ? 0 : 1; } /** * Hadoop计算框架下的Map类, 用于并行处理文本分词任务 * @author BOB * */ static class Map extends Mapper{ @Override protected void map(Text key, Text value, Context context) throws IOException, InterruptedException { //创建分词器 Analyzer analyzer = new PaodingAnalyzer(); String line = value.toString(); StringReader reader = new StringReader(line); //获取分词流对象 TokenStream ts = analyzer.tokenStream("", reader); StringBuilder sb = new StringBuilder(); //遍历分词流中的词语 while(ts.incrementToken()) { CharTermAttribute ta = ts.getAttribute(CharTermAttribute.class); if(sb.length() != 0) { sb.append(" ").append(ta.toString()); } else { sb.append(ta.toString()); } } value.set(sb.toString()); context.write(key, value); } } }
分词预先处理结果,将所有新闻集中到一个文本中,key为类别,一行代表一篇新闻,单词之间用空格分开
处理后的数据可用于mahout做贝叶斯分类器
参考文章:
http://f.dataguru.cn/thread-244375-1-1.html
http://www.cnblogs.com/panweishadow/p/4320720.html
文章标题:文本挖掘分词mapreduce化
转载来于:http://scyanting.com/article/jsedjj.html