怎么进行Spark性能优化指南得分析
本篇文章为大家展示了怎么进行Spark性能优化指南得分析,内容简明扼要并且容易理解,绝对能使你眼前一亮,通过这篇文章的详细介绍希望你能有所收获。
创新互联建站专注于企业网络营销推广、网站重做改版、秦淮网站定制设计、自适应品牌网站建设、HTML5、商城系统网站开发、集团公司官网建设、外贸营销网站建设、高端网站制作、响应式网页设计等建站业务,价格优惠性价比高,为秦淮等各大城市提供网站开发制作服务。
一. Spark作业原理
我们使用spark-submit提交一个Spark作业之后,这个作业就会启动一个对应的Driver进程。该进程是向集群管理器(Yarn,K8s)申请运行Spark作业需要使用的资源,这里的资源指的就是Executor进程。YARN集群管理器会根据我们为Spark作业设置的资源参数,在各个工作节点上,启动一定数量的Executor进程,每个Executor进程都占有一定数量的内存和CPU core。
在申请到了作业执行所需的资源之后,Driver进程会将我们编写的Spark作业代码分拆为多个stage,每个stage执行一部分代码片段,并为每个stage创建一批task,然后将这些task分配到各个Executor进程中执行。task是最小的计算单元,负责执行一模一样的计算逻辑。一个stage的所有task都执行完毕之后,会在各个节点本地的磁盘文件中写入计算中间结果,然后Driver就会调度运行下一个stage。
Spark是根据shuffle类算子来进行stage的划分。如果我们的代码中执行了某个shuffle类算子(比如reduceByKey、join等),那么就会在该算子处,划分出一个stage界限来。可以大致理解为,shuffle算子执行之前的代码会被划分为一个stage,shuffle算子执行以及之后的代码会被划分为下一个stage。因此一个stage刚开始执行的时候,它的每个task可能都会从上一个stage的task所在的节点,去通过网络传输拉取需要自己处理的所有key,然后对拉取到的所有相同的key使用我们自己编写的算子函数执行聚合操作
当我们在代码中执行了cache/persist等持久化操作时,根据我们选择的持久化级别的不同,每个task计算出来的数据也会保存到Executor进程的内存或者所在节点的磁盘文件中。
因此Executor的内存主要分为三块:
第一块是让task执行我们自己编写的代码时使用,默认是占Executor总内存的20%;
第二块是让task通过shuffle过程拉取了上一个stage的task的输出后,进行聚合等操作时使用,默认也是占Executor总内存的20%;
第三块是让RDD持久化时使用,默认占Executor总内存的60%。
二.核心调优参数
num-executors:该参数用于设置Spark作业总共要用多少个Executor进程来执行。Driver在向YARN集群管理器申请资源时,YARN集群管理器会尽可能按照你的设置来在集群的各个工作节点上,启动相应数量的Executor进程。这个参数非常之重要,如果不设置的话,默认只会给你启动少量的Executor进程,此时你的Spark作业的运行速度是非常慢的。(建议50~100个左右的Executor进程)
executor-memory:该参数用于设置每个Executor进程的内存。Executor内存的大小,很多时候直接决定了Spark作业的性能,而且跟常见的JVM OOM异常,也有直接的关联。(根据作业大小不同,建议设置4G~8G,num-executors乘以executor-memory,是不能超过队列的最大内存量的)
executor-cores:该参数用于设置每个Executor进程的CPU core数量。这个参数决定了每个Executor进程并行执行task线程的能力。因为每个CPU core同一时间只能执行一个task线程,因此每个Executor进程的CPU core数量越多,越能够快速地执行完分配给自己的所有task线程。(建议设置为2~4个,且num-executors * executor-cores不要超过队列总CPU core的1/3~1/2)
driver-memory:该参数用于设置Driver进程的内存(建议设置512M到1G)。
spark.default.parallelism:该参数用于设置每个stage的默认task数量。这个参数极为重要,如果不设置可能会直接影响你的Spark作业性能。(建议为50~500左右,缺省情况下Spark自己根据底层HDFS的block数量来设置task的数量,默认是一个HDFS block对应一个task。Spark官网建议设置该参数为num-executors * executor-cores的2~3倍较为合适)
spark.storage.memoryFraction:该参数用于设置RDD持久化数据在Executor内存中能占的比例,默认是0.6(原则上是尽可能保证数据能够全部在内存中,但如果发现作业发生频繁的GC,就该考虑是否调小)
spark.shuffle.memoryFraction:该参数用于设置shuffle过程中一个task拉取到上个stage的task的输出后,进行聚合操作时能够使用的Executor内存的比例,默认是0.2。也就是说,Executor默认只有20%的内存用来进行该操作。shuffle操作在进行聚合时,如果发现使用的内存超出了这个20%的限制,那么多余的数据就会溢写到磁盘文件中去,此时就会极大地降低性能。(shuffle操作较多时,建议降低持久化操作的内存占比,提高shuffle操作的内存占比比例,避免shuffle过程中数据过多时内存不够用,必须溢写到磁盘上,降低了性能)
上述内容就是怎么进行Spark性能优化指南得分析,你们学到知识或技能了吗?如果还想学到更多技能或者丰富自己的知识储备,欢迎关注创新互联行业资讯频道。
标题名称:怎么进行Spark性能优化指南得分析
标题URL:http://scyanting.com/article/pchcoe.html