java并查集怎么实现
这篇文章主要介绍“java并查集怎么实现”,在日常操作中,相信很多人在java并查集怎么实现问题上存在疑惑,小编查阅了各式资料,整理出简单好用的操作方法,希望对大家解答”java并查集怎么实现”的疑惑有所帮助!接下来,请跟着小编一起来学习吧!
创新互联从2013年成立,是专业互联网技术服务公司,拥有项目网站制作、成都网站设计网站策划,项目实施与项目整合能力。我们以让每一个梦想脱颖而出为使命,1280元政和做网站,已为上家服务,为政和各地企业和个人服务,联系电话:18980820575
一、概述
并查集:一种树型数据结构,用于解决一些不相交集合的合并及查询问题。例如:有n个村庄,查询2个村庄之间是否有连接的路,连接2个村庄
两大核心:
查找 (Find) : 查找元素所在的集合
合并 (Union) : 将两个元素所在集合合并为一个集合
二、实现
并查集有两种常见的实现思路
快查(Quick Find)
查找(Find)的时间复杂度:O(1)
合并(Union)的时间复杂度:O(n)
快并(Quick Union)
查找(Find)的时间复杂度:O(logn)可以优化至O(a(n))a(n)< 5
合并(Union)的时间复杂度:O(logn)可以优化至O(a(n))a(n)< 5
使用数组实现树型结构,数组下标为元素,数组存储的值为父节点的值
创建抽象类Union Find
public abstract class UnionFind { int[] parents; /** * 初始化并查集 * @param capacity */ public UnionFind(int capacity){ if(capacity < 0) { throw new IllegalArgumentException("capacity must be >=0"); } //初始时每一个元素父节点(根结点)是自己 parents = new int[capacity]; for(int i = 0; i < parents.length;i++) { parents[i] = i; } } /** * 检查v1 v2 是否属于同一个集合 */ public boolean isSame(int v1,int v2) { return find(v1) == find(v2); } /** * 查找v所属的集合 (根节点) */ public abstract int find(int v); /** * 合并v1 v2 所属的集合 */ public abstract void union(int v1, int v2); // 范围检查 public void rangeCheck(int v) { if(v<0 || v > parents.length) throw new IllegalArgumentException("v is out of capacity"); } }
2.1 Quick Find实现
以Quick Find实现的并查集,树的高度最高为2,每个节点的父节点就是根节点
public class UnionFind_QF extends UnionFind { public UnionFind_QF(int capacity) { super(capacity); } // 查 @Override public int find(int v) { rangeCheck(v); return parents[v]; } // 并 将v1所在集合并到v2所在集合上 @Override public void union(int v1, int v2) { // 查找v1 v2 的父(根)节点 int p1= find(v1); int p2 = find(v2); if(p1 == p2) return; //将所有以v1的根节点为根节点的元素全部并到v2所在集合上 即父节点改为v2的父节点 for(int i = 0; i< parents.length; i++) { if(parents[i] == p1) { parents[i] = p2; } } } }
2.2 Quick Union实现
public class UnionFind_QU extends UnionFind { public UnionFind_QU(int capacity) { super(capacity); } //查某一个元素的根节点 @Override public int find(int v) { //检查下标是否越界 rangeCheck(v); // 一直循环查找节点的根节点 while (v != parents[v]) { v = parents[v]; } return v; } //V1 并到 v2 中 @Override public void union(int v1, int v2) { int p1 = find(v1); int p2 = find(v2); if(p1 == p2) return; //将v1 根节点 的 父节点 修改为 v2的根结点 完成合并 parents[p1] = p2; } }
三、优化
并查集常用快并来实现,但是快并有时会出现树不平衡的情况
有两种优化思路:rank优化,size优化
3.1基于size的优化
核心思想:元素少的树 嫁接到 元素多的树
public class UniondFind_QU_S extends UnionFind{ // 创建sizes 数组记录 以元素(下标)为根结点的元素(节点)个数 private int[] sizes; public UniondFind_QU_S(int capacity) { super(capacity); sizes = new int[capacity]; //初始都为 1 for(int i = 0;i < sizes.length;i++) { sizes[i] = 1; } } @Override public int find(int v) { rangeCheck(v); while (v != parents[v]) { v = parents[v]; } return v; } @Override public void union(int v1, int v2) { int p1 = find(v1); int p2 = find(v2); if(p1 == p2) return; //如果以p1为根结点的元素个数 小于 以p2为根结点的元素个数 p1并到p2上,并且更新p2为根结点的元素个数 if(sizes[p1] < sizes[p2]) { parents[p1] = p2; sizes[p2] += sizes[p1]; // 反之 则p2 并到 p1 上,更新p1为根结点的元素个数 }else { parents[p2] = p1; sizes[p1] += sizes[p2]; } } }
基于size优化还有可能会导致树不平衡
3.2基于rank优化
核心思想:矮的树 嫁接到 高的树
public class UnionFind_QU_R extends UnionFind_QU { // 创建rank数组 ranks[i] 代表以i为根节点的树的高度 private int[] ranks; public UnionFind_QU_R(int capacity) { super(capacity); ranks = new int[capacity]; for(int i = 0;i < ranks.length;i++) { ranks[i] = 1; } } public void union(int v1, int v2) { int p1 = find(v1); int p2 = find(v2); if(p1 == p2) return; // p1 并到 p2 上 p2为根 树的高度不变 if(ranks[p1] < ranks[p2]) { parents[p1] = p2; // p2 并到 p1 上 p1为根 树的高度不变 } else if(ranks[p1] > ranks[p2]) { parents[p2] = p1; }else { // 高度相同 p1 并到 p2上,p2为根 树的高度+1 parents[p1] = p2; ranks[p2] += 1; } } }
基于rank优化,随着Union次数的增多,树的高度依然会越来越高 导致find操作变慢
有三种思路可以继续优化 :路径压缩、路径分裂、路径减半
3.2.1路径压缩(Path Compression )
在find时使路径上的所有节点都指向根节点,从而降低树的高度
/** * Quick Union -基于rank的优化 -路径压缩 * */ public class UnionFind_QU_R_PC extends UnionFind_QU_R { public UnionFind_QU_R_PC(int capacity) { super(capacity); } @Override public int find(int v) { rangeCheck(v); if(parents[v] != v) { //递归 使得从当前v 到根节点 之间的 所有节点的 父节点都改为根节点 parents[v] = find(parents[v]); } return parents[v]; } }
虽然能降低树的高度,但是实现成本稍高
3.2.2路径分裂(Path Spliting)
使路径上的每个节点都指向其祖父节点
/** * Quick Union -基于rank的优化 -路径分裂 * */ public class UnionFind_QU_R_PS extends UnionFind_QU_R { public UnionFind_QU_R_PS(int capacity) { super(capacity); } @Override public int find(int v) { rangeCheck(v); while(v != parents[v]) { int p = parents[v]; parents[v] = parents[parents[v]]; v = p; } return v; } }
3.2.3路径减半(Path Halving)
使路径上每隔一个节点就指向其祖父节点
/** * Quick Union -基于rank的优化 -路径减半 * */ public class UnionFind_QU_R_PH extends UnionFind_QU_R { public UnionFind_QU_R_PH(int capacity) { super(capacity); } public int find(int v) { rangeCheck(v); while(v != parents[v]) { parents[v] = parents[parents[v]]; v = parents[v]; } return v; } }
使用Quick Union + 基于rank的优化 + 路径分裂 或 路径减半
可以保证每个操作的均摊时间复杂度为O(a(n)) , a(n) < 5
到此,关于“java并查集怎么实现”的学习就结束了,希望能够解决大家的疑惑。理论与实践的搭配能更好的帮助大家学习,快去试试吧!若想继续学习更多相关知识,请继续关注创新互联网站,小编会继续努力为大家带来更多实用的文章!
本文名称:java并查集怎么实现
转载注明:http://scyanting.com/article/pchhdo.html