Linux内核设备驱动之内核的时间管理笔记整理
这篇文章给大家分享的是有关Linux内核设备驱动之内核的时间管理笔记整理的内容。小编觉得挺实用的,因此分享给大家做个参考,一起跟随小编过来看看吧。
站在用户的角度思考问题,与客户深入沟通,找到郊区网站设计与郊区网站推广的解决方案,凭借多年的经验,让设计与互联网技术结合,创造个性化、用户体验好的作品,建站类型包括:成都网站设计、做网站、企业官网、英文网站、手机端网站、网站推广、域名与空间、网页空间、企业邮箱。业务覆盖郊区地区。
/****************** * linux内核的时间管理 ******************/
(1)内核中的时间概念
时间管理在linux内核中占有非常重要的作用。
相对于事件驱动而言,内核中有大量函数是基于时间驱动的。
有些函数是周期执行的,比如每10毫秒刷新一次屏幕;
有些函数是推后一定时间执行的,比如内核在500毫秒后执行某项任务。
要区分:
*绝对时间和相对时间
*周期性产生的事件和推迟执行的事件
周期性事件是由系统系统定时器驱动的
(2)HZ值
内核必须在硬件定时器的帮助下才能计算和管理时间。
定时器产生中断的频率称为节拍率(tick rate)。
在内核中指定了一个变量HZ,内核初始化的时候会根据这个值确定定时器的节拍率。
HZ定义在
也就是时钟中断每秒发生1000次,周期为1毫秒。即:
#define HZ 1000
注意!HZ不是个固定不变的值,它是可以更改的,可以在内核源代码配置的时候输入。
不同的体系结构其HZ值是不一样的,比如arm就采用100。
如果在驱动中要使用系统的中断频率,直接使用HZ,而不要用100或1000
a.理想的HZ值
i386的HZ值一直采用100,直到2.5版后才改为1000。
提高节拍率意味着时钟中断产生的更加频繁,中断处理程序也会更频繁地执行。
带来的好处有:
*内核定时器能够以更高的频率和更高的准确度运行
*依赖定时器执行的系统调用,比如poll()和select(),运行的精度更高
*提高进程抢占的准确度
(缩短了调度延时,如果进程还剩2ms时间片,在10ms的调度周期下,进程会多运行8ms。
由于耽误了抢占,对于一些对时间要求严格的任务会产生影响)
坏处有:
*节拍率要高,系统负担越重。
中断处理程序将占用更多的处理器时间。
(3)jiffies
全局变量jiffies用于记录系统启动以来产生的节拍的总数。
启动时,jiffies初始化为0,此后每次时钟中断处理程序都会增加该变量的值。
这样,系统启动后的运行时间就是jiffies/HZ秒
jiffies定义于
extern unsigned long volatile jiffies;
jiffies变量总是为unsigned long型。
因此在32位体系结构上是32位,而在64位体系上是64位。对于32位的jiffies,如果HZ为1000,49.7天后会溢出。虽然溢出的情况不常见,但程序在检测超时时仍然可能因为回绕而导致错误。linux提供了4个宏来比较节拍计数,它们能正确地处理节拍计数回绕。
#include#define time_after(unknown, known) // unknow > known #define time_before(unknown, known) // unknow < known #define time_after_eq(unknown, known) // unknow >= known #define time_before_eq(unknown, known) // unknow <= known
unknown通常是指jiffies,known是需要对比的值(常常是一个jiffies加减后计算出的相对值)例:
unsigned long timeout = jiffies + HZ/2; /* 0.5秒后超时 */ ... if(time_before(jiffies, timeout)){ /* 没有超时,很好 */ }else{ /* 超时了,发生错误 */
time_before可以理解为如果在超时(timeout)之前(before)完成
*系统中还声明了一个64位的值jiffies_64,在64位系统中jiffies_64和jiffies是一个值。
可以通过get_jiffies_64()获得这个值。
*使用
u64 j2; j2 = get_jiffies_64();
(4)获得当前时间
驱动程序中一般不需要知道墙钟时间(也就是年月日的时间)。但驱动可能需要处理绝对时间。
为此,内核提供了两个结构体,都定义在
struct timeval { time_t tv_sec; /* seconds */ suseconds_t tv_usec; /* microseconds */ }; //较老,但很流行。采用秒和毫秒值,保存了1970年1月1日0点以来的秒数 struct timespec { time_t tv_sec; /* seconds */ long tv_nsec; /* nanoseconds */ }; //较新,采用秒和纳秒值保存时间。
do_gettimeofday()该函数用通常的秒或微秒来填充一个指向struct timeval的指针变量,原型如下:
#includevoid do_gettimeofday(struct timeval *tv);
current_kernel_time()该函数可用于获得timespec
#includestruct timespec current_kernel_time(void);
/******************** *确定时间的延迟执行 *******************/
设备驱动程序经常需要将某些特定代码延迟一段时间后执行,通常是为了让硬件能完成某些任务。
长于定时器周期(也称为时钟嘀嗒)的延迟可以通过使用系统时钟完成,而非常短的延时则通过软件循环的方式完成
(1)短延时
对于那些最多几十个毫秒的延迟,无法借助系统定时器。
系统通过软件循环提供了下面的延迟函数:
#include/* 实际在 */ void ndelay(unsigned long nsecs); /*延迟纳秒 */ void udelay(unsigned long usecs); /*延迟微秒 */ void mdelay(unsigned long msecs); /*延迟毫秒 */
这三个延迟函数均是忙等待函数,在延迟过程中无法运行其他任务。
实际上,当前所有平台都无法达到纳秒精度。
(2)长延时
a.在延迟到期前让出处理器
while(time_before(jiffies, j1)) schedule();
在等待期间可以让出处理器,但系统无法进入空闲模式(因为这个进程始终在进行调度),不利于省电。
b.超时函数
#includesigned long schedule_timeout(signed long timeout);
使用方式:
set_current_state(TASK_INTERRUPTIBLE); schedule_timeout(2*HZ); /* 睡2秒 */
进程经过2秒后会被唤醒。如果不希望被用户空间打断,可以将进程状态设置为TASK_UNINTERRUPTIBLE。
msleep ssleep // 秒
(3)等待队列
使用等待队列也可以实现长延迟。
在延迟期间,当前进程在等待队列中睡眠。
进程在睡眠时,需要根据所等待的事件链接到某一个等待队列。
a.声明等待队列
等待队列实际上就是一个进程链表,链表中包含了等待某个特定事件的所有进程。
#includestruct __wait_queue_head { spinlock_t lock; struct list_head task_list; }; typedef struct __wait_queue_head wait_queue_head_t;
要想把进程加入等待队列,驱动首先要在模块中声明一个等待队列头,并将它初始化。
静态初始化
DECLARE_WAIT_QUEUE_HEAD(name);
动态初始化
wait_queue_head_t my_queue; init_waitqueue_head(&my_queue);
b.等待函数
进程通过调用下面函数可以在某个等待队列中休眠固定的时间:
#includelong wait_event_timeout(wait_queue_head_t q,condition, long timeout); long wait_event_interruptible_timeout(wait_queue_head_t q, condition, long timeout);
调用这两个函数后,进程会在给定的等待队列q上休眠,但会在超时(timeout)到期时返回。
如果超时到期,则返回0,如果进程被其他事件唤醒,则返回剩余的时间数。
如果没有等待条件,则将condition设为0
使用方式:
wait_queue_head_t wait; init_waitqueue_head(&wait); wait_event_interruptible_timeout(wait, 0, 2*HZ); /*当前进程在等待队列wait中睡2秒 */
(4)内核定时器
还有一种将任务延迟执行的方法是采用内核定时器。与前面几种延迟方法不同,内核定时器并不会阻塞当前进程,启动一个内核定时器只是声明了要在未来的某个时刻执行一项任务,当前进程仍然继续执行。不要用定时器完成硬实时任务
定时器由结构timer_list表示,定义在
struct timer_list{ struct list_head entry; /* 定时器链表 */ unsigned long expires; /* 以jiffies为单位的定时值 */ spinlock_t lock; void(*function)(unsigned long); /* 定时器处理函数 */ unsigned long data; /* 传给定时器处理函数的参数 */ }
内核在
a.创建定时器
struct timer_list my_timer;
b.初始化定时器
init_timer(&my_timer); /* 填充数据结构 */ my_timer.expires = jiffies + delay; my_timer.data = 0; my_timer.function = my_function; /*定时器到期时调用的函数*/
c.定时器的执行函数
超时处理函数的原型如下:
void my_timer_function(unsigned long data);
可以利用data参数用一个处理函数处理多个定时器。可以将data设为0
d.激活定时器
add_timer(&my_timer);
定时器一旦激活就开始运行。
e.更改已激活的定时器的超时时间
mod_timer(&my_timer, jiffies+ney_delay);
可以用于那些已经初始化但还没激活的定时器,如果调用时定时器未被激活则返回0,否则返回1。一旦mod_timer返回,定时器将被激活。
f.删除定时器
del_timer(&my_timer);
被激活或未被激活的定时器都可以使用,如果调用时定时器未被激活则返回0,否则返回1。不需要为已经超时的定时器调用,它们被自动删除
g.同步删除
del_time_sync(&my_timer);
在smp系统中,确保返回时,所有的定时器处理函数都退出。不能在中断上下文使用。
/******************** *不确定时间的延迟执行 *******************/
(1)什么是不确定时间的延迟
前面介绍的是确定时间的延迟执行,但在写驱动的过程中经常遇到这种情况:用户空间程序调用read函数从设备读数据,但设备中当前没有产生数据。此时,驱动的read函数默认的操作是进入休眠,一直等待到设备中有了数据为止。
这种等待就是不定时的延迟,通常采用休眠机制来实现。
(2)休眠
休眠是基于等待队列实现的,前面我们已经介绍过wait_event系列函数,但现在我们将不会有确定的休眠时间。
当进程被置入休眠时,会被标记为特殊状态并从调度器的运行队列中移走。
直到某些事件发生后,如设备接收到数据,则将进程重新设为运行态并进入运行队列进行调度。
休眠函数的头文件是
a.休眠的规则
*永远不要在原子上下文中休眠
*当被唤醒时,我们无法知道睡眠了多少时间,也不知道醒来后是否获得了我们需要的资源
*除非知道有其他进程会在其他地方唤醒我们,否则进程不能休眠
b.等待队列的初始化
见前文
c.休眠函数
linux最简单的睡眠方式为wait_event宏。该宏在实现休眠的同时,检查进程等待的条件。
1. void wait_event( wait_queue_head_t q, int condition); 2. int wait_event_interruptible( wait_queue_head_t q, int condition);
q: 是等待队列头,注意是采用值传递。
condition: 任意一个布尔表达式,在条件为真之前,进程会保持休眠。
注意!进程需要通过唤醒函数才可能被唤醒,此时需要检测条件。
如果条件满足,则被唤醒的进程真正醒来;
如果条件不满足,则进程继续睡眠。
d.唤醒函数
当我们的进程睡眠后,需要由其他的某个执行线程(可能是另一个进程或中断处理例程)唤醒。唤醒函数:
#include1. void wake_up( wait_queue_head_t *queue); 2. void wake_up_interruptible( wait_queue_head_t *queue);
wake_up会唤醒等待在给定queue上的所有进程。而wake_up_interruptible唤醒那些执行可中断休眠的进程。实践中,约定做法是在使用wait_event时使用wake_up,而使用wait_event_interruptible时使用wake_up_interruptible。
感谢各位的阅读!关于“Linux内核设备驱动之内核的时间管理笔记整理”这篇文章就分享到这里了,希望以上内容可以对大家有一定的帮助,让大家可以学到更多知识,如果觉得文章不错,可以把它分享出去让更多的人看到吧!
当前名称:Linux内核设备驱动之内核的时间管理笔记整理
当前链接:http://scyanting.com/article/pcspop.html