SparkSQL初步应用
最近项目中使用SparkSQL来做数据的统计分析,闲来就记录下来。 直接上代码: import org.apache.spark.SparkContext import org.apache.spark.sql.SQLContext object SparkSQL { //定义两个case class A和B: // A是用户的基本信息:包括客户号、***号和性别 // B是用户的交易信息:包括客户号、消费金额和消费状态 case class A(custom_id:String,id_code:String,sex:String) case class B(custom_id:String,money:String,status:Int) def main(args:Array[String]): Unit = { //数据量不大时,测试发现使用local[*]的效率要比local和基于YARN的效率都高。 //这里使用local[*]模式,设置AppName为"SparkSQL" val sc = new SparkContext("local[*]", "SparkSQL") val sqlContext = new SQLContext(sc) import sqlContext.createSchemaRDD //定义两个RDD:A_RDD和B_RDD。数据之间以char(1)char(1)分隔,取出对应的客户信息。 val A_RDD = sc.textFile("hdfs://172.16.30.2:25000/usr/tmpdata/A.dat").map(_.split("\u0001\u0001")).map(t => tbclient(t(0), t(4), t(13))) val B_RDD = sc.textFile("hdfs://172.16.30.3:25000/usr/tmpdata/B.dat").map(_.split("\u0001\u0001")).map(t=>tbtrans(t(16),t(33),t(71).toInt)) //将普通RDD转为SchemaRDD A_RDD.registerTempTable("A_RDD") B_RDD.registerTempTable("B_RDD") def toInt(s: String): Int = { try { s.toInt } catch { case e: Exception => 9999 } } def myfun2(id_code:String):Int = { val i = id_code.length i } //定义函数:根据***号判断属相 //这里注意Scala的substring方法的使用,和Java、Oracle等都不同 def myfun5(id_code:String):String = { var year = "" if(id_code.length == 18){ val md = toInt(id_code.substring(6,10)) val i = 1900 val years=new Array[String](12) years(0) = "鼠" years(1) = "牛" years(2) = "虎" years(3) = "兔" years(4) = "龙" years(5) = "蛇" years(6) = "马" years(7) = "羊" years(8) = "猴" years(9) = "鸡" years(10) = "狗" years(11) = "猪" year = years((md-i)%years.length) } year } //设置年龄段 def myfun3(id_code:String):String = { var rt = "" if(id_code.length == 18){ val age = toInt(id_code.substring(6,10)) if(age >= 1910 && age < 1920){ rt = "1910 ~ 1920" } else if(age >= 1920 && age < 1930){ rt = "1920 ~ 1930" } else if(age >= 1930 && age < 1940){ rt = "1930 ~ 1940" } else if(age >= 1940 && age < 1950){ rt = "1940 ~ 1950" } else if(age >= 1950 && age < 1960){ rt = "1950 ~ 1960" } else if(age >= 1960 && age <1970){ rt = "1960 ~ 1970" } else if(age >= 1970 && age <1980){ rt = "1970 ~ 1980" } else if(age >= 1980 && age <1990){ rt = "1980 ~ 1990" } else if(age >= 1990 && age <2000){ rt = "1990 ~ 2000" } else if(age >= 2000 && age <2010){ rt = "2000 ~ 2010" } else if(age >= 2010 && age<2014){ rt = "2010以后" } } rt } //划分消费金额区间 def myfun4(money:String):String = { var rt = "" if(money>="10000" && money<"50000"){ rt = "10000 ~ 50000" } else if(money>="50000" && money<"60000"){ rt = "50000 ~ 60000" } else if(money>="60000" && money<"70000"){ rt = "60000 ~ 70000" } else if(money>="70000" && money<"80000"){ rt = "70000 ~ 80000" } else if(money>="80000" && money<"100000"){ rt = "80000 ~ 100000" } else if(money>="100000" && money<"150000"){ rt = "100000 ~ 150000" } else if(money>="150000" && money<"200000"){ rt = "150000 ~ 200000" } else if(money>="200000" && money<"1000000"){ rt = "200000 ~ 1000000" } else if(money>="1000000" && money<"10000000"){ rt = "1000000 ~ 10000000" } else if(money>="10000000" && money<"50000000"){ rt = "10000000 ~ 50000000" } else if(money>="5000000" && money<"100000000"){ rt = "5000000 ~ 100000000" } rt } //根据生日判断星座 def myfun1(id_code:String):String = { var rt = "" if(id_code.length == 18){ val md = toInt(id_code.substring(10,14)) if (md >= 120 && md <= 219){ rt = "水瓶座" } else if (md >= 220 && md <= 320){ rt = "双鱼座" } else if (md >= 321 && md <= 420){ rt = "白羊座" } else if (md >= 421 && md <= 521){ rt = "金牛座" } else if (md >= 522 && md <= 621){ rt = "双子座" } else if (md >= 622 && md <= 722){ rt = "巨蟹座" } else if (md >= 723 && md <= 823){ rt = "狮子座" } else if (md >= 824 && md <= 923){ rt = "***座" } else if (md >= 924 && md <= 1023){ rt = "天秤座" } else if (md >= 1024 && md <= 1122){ rt = "天蝎座" } else if (md >= 1123 && md <= 1222){ rt = "射手座" } else if ((md >= 1223 && md <= 1231) | (md >= 101 && md <= 119)){ rt = "摩蝎座" } else rt = "无效" } rt } //注册函数 sqlContext.registerFunction("fun1",(x:String)=>myfun1(x)) sqlContext.registerFunction("fun3",(z:String)=>myfun3(z)) sqlContext.registerFunction("fun4",(m:String)=>myfun4(m)) sqlContext.registerFunction("fun5",(n:String)=>myfun5(n)) //星座统计,注意,这里必须要有fun2(id_code)=18这个限制,否则,第一个字段有这个限制,而第二个统计字段值却没有这个限制 val result1 = sqlContext.sql("select fun1(id_code),count(*) from A_RDD t where fun2(id_code)=18 group by fun1(id_code)") //属相统计 val result2 = sqlContext.sql("select fun5(a.id_code),count(*) from A_RDD a where fun2(id_code)=18 group by fun5(a.id_code)") //根据消费区间统计消费人数和总金额 val result3 = sqlContext.sql("select fun4(a.money),count(distinct a.custom_id),SUM(a.money) from B_RDD a where a.status=8 and a.custom_id in (select b.custom_id from A_RDD b where fun2(b.id_code)=18) group by fun4(a.money)") //打印结果 result3.collect().foreach(println) //也可以将结果保存到OS/HDFS上 result2.saveAsTextFile("file:///tmp/age") } }
成都创新互联是专业的湘西土家族网站建设公司,湘西土家族接单;提供成都网站建设、成都做网站,网页设计,网站设计,建网站,PHP网站建设等专业做网站服务;采用PHP框架,可快速的进行湘西土家族网站开发网页制作和功能扩展;专业做搜索引擎喜爱的网站,专业的做网站团队,希望更多企业前来合作!
在测试result3的时候,发现报错:
Exception in thread "main" java.lang.RuntimeException: [1.101] failure: ``NOT'' expected but `select' found
select fun5(a.id_code),count(*) from A_RDD a where fun2(a.id_code)=18 and a.custom_id IN (select distinct b.custom_id from B_RDD b where b.status=8) group by fun5
(a.id_code)
^
at scala.sys.package$.error(package.scala:27)
at org.apache.spark.sql.catalyst.SqlParser.apply(SqlParser.scala:60)
at org.apache.spark.sql.SQLContext.parseSql(SQLContext.scala:74)
at org.apache.spark.sql.SQLContext.sql(SQLContext.scala:267)
at SparkSQL$.main(SparkSQL.scala:198)
at SparkSQL.main(SparkSQL.scala)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:57)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:606)
at com.intellij.rt.execution.application.AppMain.main(AppMain.java:140)
目前还在调试阶段,目测可能SparkSQL对条件中子查询的支持做的不是很好(只是猜测)。
如有问题,还望路过的高手不吝赐教。
本文题目:SparkSQL初步应用
本文URL:http://scyanting.com/article/pggdsg.html