(版本定制)第18课:SparkStreaming中空RDD处理及流处理程序优雅的停止

本期内容:

成都创新互联公司专注于丽水网站建设服务及定制,我们拥有丰富的企业做网站经验。 热诚为您提供丽水营销型网站建设,丽水网站制作、丽水网页设计、丽水网站官网定制、微信平台小程序开发服务,打造丽水网络公司原创品牌,更为您提供丽水网站排名全网营销落地服务。

      1. Spark Streaming中RDD为空处理

      2. Streaming Context程序停止方式

      Spark Streaming运用程序是根据我们设定的Batch Duration来产生RDD,产生的RDD存在partitons数据为空的情况,但是还是会执行foreachPartition,会获取计算资源,然后计算一下,这种情况就会浪费

集群计算资源,所以需要在程序运行的时候进行过滤,参考如下代码:

package com.dt.spark.sparkstreaming
import org.apache.spark.SparkConf
import org.apache.spark.streaming.{Seconds, StreamingContext}

object OnlineForeachRDD2DB {
    def main(args: Array[String]){
     val conf = new SparkConf() //创建SparkConf对象
      conf.setAppName("OnlineForeachRDD2DB"//设置应用程序的名称,在程序运行的监控界面可以看到名称
      conf.setMaster("spark://Master:7077"//此时,程序在Spark集群
      /**
        * 设置batchDuration时间间隔来控制Job生成的频率并且创建Spark Streaming执行的入口
         */
      val ssc = new StreamingContext(conf, Seconds(300))
      val lines = ssc.socketTextStream("Master", 9999)
      val words = lines.flatMap(line => line.split(" "))
      val wordCounts = words.map(word => (word,1)).reduceByKey(_ + _)
      wordCounts.foreachRDD{ rdd =>
       /**
        * 例如:rdd为空,rdd为空会产生什么问题呢?
         *     rdd没有任何元素,但是也会做做foreachPartition,也会进行写数据库的操作或者把数据写到HDFS上,
         *     rdd里面没有任何记录,但是还会获取计算资源,然后计算一下,消耗计算资源,这个时候纯属浪费资源,
         *         所以必须对空rdd进行处理;

        *         例如:使用rdd.count()>0,但是rdd.count()会触发一个Job;

         *             使用rdd.isEmpty()的时候,take也会触发Job;

         *             def isEmpty(): Boolean = withScope {

        *                   partitions.length == 0 || take(1).length == 0

        *             }

        *
        *              rdd.partitions.isEmpty里判断的是length是否等于0,就代表是否有partition
        *              def isEmpty: Boolean = { length == 0 }
        *             注:rdd.isEmpty()和rdd.partitions.isEmpty是两种概念;
         */

    //
    if(rdd.partitions.length > 0) {
        rdd.foreachPartition{ partitonOfRecord =>
         if(partitionOfRecord.hasNext) // 判断下partition中是否存在数据

         {

            val connection = ConnectionPool.getConnection()
            partitonOfRecord.foreach(record => {
            val sql = "insert into streaming_itemcount(item,rcount) values('" + record._1 + "'," + record._2 + ")"
           
 val stmt = connection.createStatement()
            stmt.executeUpdate(sql)
            stmt.close()
          })
          ConnectionPool.returnConnection(connection)
        }

        }

       }
      }

     ssc.start()
     ssc.awaitTermination()
    }
}

二、SparkStreaming程序停止方式

第一种是不管接受到数据是否处理完成,直接被停止掉。

第二种是接受到数据全部处理完成才停止掉,一般采用第二种方式。

第一种停止方式:

/**
 * Stop the execution of the streams immediately (does not wait for all received data
 * to be processed). By default, if `stopSparkContextis not specified, the underlying
 * SparkContext will also be stopped. This implicit behavior can be configured using the
 * SparkConf configuration spark.streaming.stopSparkContextByDefault.
 *
 * 把streams的执行直接停止掉(并不会等待所有接受到的数据处理完成),默认情况下SparkContext也会被停止掉,
 * 隐式的行为可以做配置,配置参数为spark.streaming.stopSparkContextByDefault。
 *
 * @param stopSparkContext If true, stops the associated SparkContext. The underlying SparkContext
 *                         will be stopped regardless of whether this StreamingContext has been
 *                         started.
 */
def stop(stopSparkContext: Boolean = conf.getBoolean("spark.streaming.stopSparkContextByDefault"true)
         ): Unit = synchronized {
 stop(stopSparkContext, false)

}

第二种停止方式:

/**
 * Stop the execution of the streams, with option of ensuring all received data
 * has been processed.
 *

 * 所有接受到的数据全部被处理完成,才把streams的执行停止掉

 *
 * @param stopSparkContext if true, stops the associated SparkContext. The underlying SparkContext
 *                         will be stopped regardless of whether this StreamingContext has been
 *                         started.
 * @param stopGracefully if true, stops gracefully by waiting for the processing of all
 *                       received data to be completed
 */
def stop(stopSparkContext: Boolean, stopGracefully: Boolean): Unit = {
 var shutdownHookRefToRemove: AnyRef = null
 if 
(AsynchronousListenerBus.withinListenerThread.value) {
  throw new SparkException("Cannot stop StreamingContext within listener thread of" +
   " AsynchronousListenerBus")
 }
 synchronized {
  try {
   state match {
    case INITIALIZED =>
     logWarning("StreamingContext has not been started yet")
    case STOPPED =>
     logWarning("StreamingContext has already been stopped")
    case ACTIVE =>
     scheduler.stop(stopGracefully)
     // Removing the streamingSource to de-register the metrics on stop()
     env.metricsSystem.removeSource(streamingSource)
     uiTab.foreach(_.detach())
     StreamingContext.setActiveContext(null)
     waiter.notifyStop()
     if (shutdownHookRef != null) {
      shutdownHookRefToRemove = shutdownHookRef
      shutdownHookRef = null
     
}
     logInfo("StreamingContext stopped successfully")
   }
  } finally {
   // The state should always be Stopped after calling `stop()`, even if we haven't started yet
   state = STOPPED
  }
 }
 if (shutdownHookRefToRemove != null) {
  ShutdownHookManager.removeShutdownHook(shutdownHookRefToRemove)
 }
 // Even if we have already stopped, we still need to attempt to stop the SparkContext because
 // a user might stop(stopSparkContext = false) and then call stop(stopSparkContext = true).
 if (stopSparkContext) sc.stop()
}


网页名称:(版本定制)第18课:SparkStreaming中空RDD处理及流处理程序优雅的停止
链接地址:http://scyanting.com/article/pjchsc.html