Python方差特征过滤如何实现

这篇文章给大家分享的是有关Python方差特征过滤如何实现的内容。小编觉得挺实用的,因此分享给大家做个参考,一起跟随小编过来看看吧。

网站建设哪家好,找成都创新互联!专注于网页设计、网站建设、微信开发、成都微信小程序、集团企业网站建设等服务项目。为回馈新老客户创新互联还提供了应城免费建站欢迎大家使用!

说明

1、通过特征本身的方差来筛选特征。特征的方差越小,特征的变化越不明显。

2、变化越不明显的特征对我们区分标签没有太大作用,因此应该消除这些特征。

实例

def variance_demo():
    """
    过滤低方差特征
    :return:
    """
    # 1. 获取数据
    data = pd.read_csv('factor_returns.csv')
    data = data.iloc[:, 1:-2]
    print('data:\n', data)
 
    # 2. 实例化一个转换器类
    transfer = VarianceThreshold(threshold=10)
 
    # 3. 调用fit_transform()
    data_new = transfer.fit_transform(data)
    print('data_new:\n', data_new, data_new.shape)
 
   
    return None

感谢各位的阅读!关于“Python方差特征过滤如何实现”这篇文章就分享到这里了,希望以上内容可以对大家有一定的帮助,让大家可以学到更多知识,如果觉得文章不错,可以把它分享出去让更多的人看到吧!


网站题目:Python方差特征过滤如何实现
URL网址:http://scyanting.com/article/pocidp.html