Docker中的Influxdb研究与实践
这篇文章主要介绍“Docker中的Influxdb研究与实践”,在日常操作中,相信很多人在Docker中的Influxdb研究与实践问题上存在疑惑,小编查阅了各式资料,整理出简单好用的操作方法,希望对大家解答”Docker中的Influxdb研究与实践”的疑惑有所帮助!接下来,请跟着小编一起来学习吧!
创新互联专注为客户提供全方位的互联网综合服务,包含不限于网站设计、成都网站制作、秀山土家族苗族网络推广、小程序设计、秀山土家族苗族网络营销、秀山土家族苗族企业策划、秀山土家族苗族品牌公关、搜索引擎seo、人物专访、企业宣传片、企业代运营等,从售前售中售后,我们都将竭诚为您服务,您的肯定,是我们最大的嘉奖;创新互联为所有大学生创业者提供秀山土家族苗族建站搭建服务,24小时服务热线:18982081108,官方网址:www.cdcxhl.com
Influxdb研究与实践:
influxdb介绍:
使用TSM(Time Structured Merge)存储引擎,允许高摄取速度和数据压缩;
使用go编写,无需其他依赖;
简单,高性能写查询httpAPI接口;
支持其他数据获取协议的插件,比如graphite,collected,OpenTSDB;
使用relay构建高可用https://docs.influxdata.com/influxdb/v1.0/high_availability/relay/;
扩展的类sql语言,很容易查询汇总数据;
tag的支持,可用让查询变的更加高效和快速;
保留策略有效地自动淘汰过期的数据;
持续所产生的自动计算的数据会使得频繁的查询更加高效;
web管理页面的支持
下载安装:
github:https://github.com/influxdata/influxdb 源码编译
官网下载:
Centos系列:wgethttps://dl.influxdata.com/influxdb/releases/influxdb-1.0.0.x86_64.rpm && sudo yum localinstall influxdb-1.0.0.x86_64.rpm
源码包系列:wgethttps://dl.influxdata.com/influxdb/releases/influxdb-1.0.0_linux_amd64.tar.gz && tar xvfz influxdb-1.0.0_linux_amd64.tar.gz
docker系列:docker pull influxdb
安装手册:https://docs.influxdata.com/influxdb/v0.9/introduction/installation/
配置:
#cat /etc/influxdb/influxdb.conf reporting-disabled = false [registration] [meta] dir = "/var/lib/influxdb/meta" hostname = "10.0.0.2" #此hostname必须写本机,否则无法连接到数据操作的API bind-address = ":8088" retention-autocreate = true election-timeout = "1s" heartbeat-timeout = "1s" leader-lease-timeout = "500ms" commit-timeout = "50ms" cluster-tracing = false [data] dir = "/var/lib/influxdb/data" max-wal-size = 104857600 # Maximum size the WAL can reach before a flush. Defaults to 100MB. wal-flush-interval = "10m" # Maximum time data can sit in WAL before a flush. wal-partition-flush-delay = "2s" # The delay time between each WAL partition being flushed. wal-dir = "/var/lib/influxdb/wal" wal-logging-enabled = true [hinted-handoff] enabled = true dir = "/var/lib/influxdb/hh" max-size = 1073741824 max-age = "168h" retry-rate-limit = 0 retry-interval = "1s" retry-max-interval = "1m" purge-interval = "1h" [admin] enabled = true bind-address = ":8083" https-enabled = false https-certificate = "/etc/ssl/influxdb.pem" [http] enabled = true bind-address = ":8086" auth-enabled = false log-enabled = true write-tracing = false pprof-enabled = false https-enabled = false https-certificate = "/etc/ssl/influxdb.pem" [opentsdb] enabled = false [collectd] enabled = false
注意:
influxdb服务会启动三个端口:8086为服务的默认数据处理端口,主要用来influxdb数据库的相关操作,可提供相关的API;8083为管理员提供了一个可视化的web界面,用来为用户提供友好的可视化查询与数据管理;8088主要为了元数据的管理。需要注意的是,influxdb默认是需要influxdb用户启动,且数据存放在/var/lib/influxdb/下面,生产环境需要注意这个。
启动:
和telegraf启动方式一样,可以使用init.d或者systemd进行管理influxdb 注意,启动之后需要查看相关的端口是否正在监听,并检查日志确保服务正常启动
使用:
如果说使用telegraf最核心的部分在配置,那么influxdb最核心的就是SQL语言的使用了。influxdb默认支持三种操作方式:
登录influxdb的shell中操作:
创建数据库: create database mydb 创建用户: create user "bigdata" with password 'bigdata' with all privileges 查看数据库: show databases; 数据插入: insert bigdata,host=server001,regin=HC load=88 切换数据库: use mydb 查看数据库中有哪些measurement(类似数据库中的表): show measurements 查询: select * from cpu limit 2 查询一小时前开始到现在结束的: #select load from cpu where time > now() - 1h 查询从历史纪元开始到1000天之间: #select load from cpu where time < now() + 1000d 查找一个时间区间: #select load from cpu where time > '2016-08-18' and time < '2016-09-19' 查询一个小时间区间的数据,比如在September 18, 2016 21:24:00:后的6分钟: #select load from cpu where time > '2016-09-18T21:24:00Z' +6m 使用正则查询所有measurement的数据: #select * from /.*/ limit 1 #select * from /^docker/ limit 3 #select * from /.*mem.*/ limit 3 正则匹配加指定tag:(=~ !~) #select * from cpu where "host" !~ /.*HC.*/ limit 4 #SELECT * FROM "h3o_feet" WHERE ("location" =~ /.*y.*/ OR "location" =~ /.*m.*/) AND "water_level" > 0 LIMIT 4 排序:group by的用法必须得是在复合函数中进行使用 #select count(type) from events group by time(10s) #select count(type) from events group by time(10s),type 给查询字段做tag: #select count(type) as number_of_types group by time(10m) #select count(type) from events group by time(1h) where time > now() - 3h 使用fill字段: #select count(type) from events group by time(1h) fill(0)/fill(-1)/fill(null) where time > now() - 3h 数据聚合: select count(type) from user_events merge admin_events group by time(10m)
使用API进行操作数据:
创建数据库: curl -G "http://localhost:8086/query" --data-urlencode "q=create database mydb" 插入数据: curl -XPOST 'http://localhost:8086/write?db=mydb' -d 'biaoge,name=xxbandy,xingqu=coding age=2' curl -i -XPOST 'http://localhost:8086/write?db=mydb' --data-binary 'cpu_load_short,host=server01,region=us-west value=0.64 1434055562000000000' curl -i -XPOST 'http://localhost:8086/write?db=mydb' --data-binary 'cpu_load_short,host=server02 value=0.67 cpu_load_short,host=server02,region=us-west value=0.55 1422568543702900257 cpu_load_short,direction=in,host=server01,region=us-west value=2.0 1422568543702900257' 将sql语句写入文件,并通过api插入: #cat sql.txt cpu_load_short,host=server02 value=0.67 cpu_load_short,host=server02,region=us-west value=0.55 1422568543702900257 cpu_load_short,direction=in,host=server01,region=us-west value=2.0 1422568543702900257 #curl -i -XPOST 'http://localhost:8086/write?db=mydb' --data-binary @cpu_data.txt 查询数据:(--data-urlencode "epoch=s" 指定时间序列 "chunk_size=20000" 指定查询块大小) # curl -G http://localhost:8086/query?pretty=true --data-urlencode "db=ydb" --data-urlencode "q=select * from biaoge where xingqu='coding'" 数据分析: #curl -G http://localhost:8086/query?pretty=true --data-urlencode "db=mydb" --data-urlencode "q=select mean(load) from cpu" #curl -G http://localhost:8086/query?pretty=true --data-urlencode "db=mydb" --data-urlencode "q=select load from cpu" 可以看到load的值分别是42 78 15.4;用mean(load)求出来的值为45,13 curl -G http://localhost:8086/query?pretty=true --data-urlencode "db=ydb" --data-urlencode "q=select mean(load) from cpu where host='server01'"
使用influxdb提供的web界面进行操作:
这里只是简单的介绍了influxdb的使用,后期如果想在grafana中汇聚并完美地展示数据,可能需要熟悉influxdb的各种查询语法。(其实就是sql语句的一些使用技巧,聚合函数的使用,子查询等等)
到此,关于“Docker中的Influxdb研究与实践”的学习就结束了,希望能够解决大家的疑惑。理论与实践的搭配能更好的帮助大家学习,快去试试吧!若想继续学习更多相关知识,请继续关注创新互联网站,小编会继续努力为大家带来更多实用的文章!
文章标题:Docker中的Influxdb研究与实践
URL链接:http://scyanting.com/article/podjjp.html