Keras怎样实现CNN
这篇文章将为大家详细讲解有关Keras怎样实现CNN,文章内容质量较高,因此小编分享给大家做个参考,希望大家阅读完这篇文章后对相关知识有一定的了解。
专注于为中小企业提供成都网站建设、成都网站制作服务,电脑端+手机端+微信端的三站合一,更高效的管理,为中小企业饶河免费做网站提供优质的服务。我们立足成都,凝聚了一批互联网行业人才,有力地推动了近千家企业的稳健成长,帮助中小企业通过网站建设实现规模扩充和转变。
在安装过Tensorflow后,后安装Keras默认将TF作为后端,Keras实现卷积网络的代码十分简洁,而且keras中的callback类提供对模型训练过程中变量的检测方法,能够根据检测变量的情况及时的调整模型的学习效率和一些参数.
下面的例子,MNIST数据作为测试
import pandas as pd import numpy as np import matplotlib.pyplot as plt import matplotlib.image as pimg import seaborn as sb # 一个构建在matplotlib上的绘画模块,支持numpy,pandas等数据结构 %matplotlib inline from sklearn.model_selection import train_test_split from sklearn.metrics import confusion_matrix # 混淆矩阵 import itertools # keras from keras.utils import to_categorical #数字标签转化成one-hot编码 from keras.models import Sequential from keras.layers import Dense,Dropout,Flatten,Conv2D,MaxPool2D from keras.optimizers import RMSprop from keras.preprocessing.image import ImageDataGenerator from keras.callbacks import ReduceLROnPlateau
Using TensorFlow backend.
# 设置绘画风格 sb.set(style='white', context='notebook', palette='deep')
# 加载数据 train_data = pd.read_csv('data/train.csv') test_data = pd.read_csv('data/test.csv') #train_x = train_data.drop(labels=['label'],axis=1) # 去掉标签列 train_x = train_data.iloc[:,1:] train_y = train_data.iloc[:,0] del train_data # 释放一下内存
# 观察一下训练数据的分布情况 g = sb.countplot(train_y) train_y.value_counts()
1 4684 7 4401 3 4351 9 4188 2 4177 6 4137 0 4132 4 4072 8 4063 5 3795 Name: label, dtype: int64
train_x.isnull().describe() # 检查是否存在确实值
train_x.isnull().any().describe()
count 784 unique 1 top False freq 784 dtype: object
test_data.isnull().any().describe()
count 784 unique 1 top False freq 784 dtype: object
# 归一化 train_x = train_x/255.0 test_x = test_data/255.0
del test_data
转换数据的shape
# reshape trian_x, test_x #train_x = train_x.values.reshape(-1, 28, 28, 1) #test_x = test_x.values.reshape(-1, 28, 28, 1) train_x = train_x.as_matrix().reshape(-1, 28, 28, 1) test_x = test_x.as_matrix().reshape(-1, 28, 28, 1)
# 吧标签列转化为one-hot 编码格式 train_y = to_categorical(train_y, num_classes = 10)
从数据中分离出验证数据
#从训练数据中分出十分之一的数据作为验证数据 random_seed = 3 train_x , val_x , train_y, val_y = train_test_split(train_x, train_y, test_size=0.1, random_state=random_seed)
一个训练样本
plt.imshow(train_x[0][:,:,0])
使用Keras搭建CNN
model = Sequential() # 第一个卷积层,32个卷积核,大小5x5,卷积模式SAME,激活函数relu,输入张量的大小 model.add(Conv2D(filters= 32, kernel_size=(5,5), padding='Same', activation='relu',input_shape=(28,28,1))) model.add(Conv2D(filters= 32, kernel_size=(5,5), padding='Same', activation='relu')) # 池化层,池化核大小2x2 model.add(MaxPool2D(pool_size=(2,2))) # 随机丢弃四分之一的网络连接,防止过拟合 model.add(Dropout(0.25)) model.add(Conv2D(filters= 64, kernel_size=(3,3), padding='Same', activation='relu')) model.add(Conv2D(filters= 64, kernel_size=(3,3), padding='Same', activation='relu')) model.add(MaxPool2D(pool_size=(2,2), strides=(2,2))) model.add(Dropout(0.25)) # 全连接层,展开操作, model.add(Flatten()) # 添加隐藏层神经元的数量和激活函数 model.add(Dense(256, activation='relu')) model.add(Dropout(0.25)) # 输出层 model.add(Dense(10, activation='softmax'))
# 设置优化器 # lr :学习效率, decay :lr的衰减值 optimizer = RMSprop(lr = 0.001, decay=0.0)
# 编译模型 # loss:损失函数,metrics:对应性能评估函数 model.compile(optimizer=optimizer, loss = 'categorical_crossentropy',metrics=['accuracy'])
创建一个callback类的实例
# keras的callback类提供了可以跟踪目标值,和动态调整学习效率 # moitor : 要监测的量,这里是验证准确率 # matience: 当经过3轮的迭代,监测的目标量,仍没有变化,就会调整学习效率 # verbose : 信息展示模式,去0或1 # factor : 每次减少学习率的因子,学习率将以lr = lr*factor的形式被减少 # mode:‘auto’,‘min’,‘max’之一,在min模式下,如果检测值触发学习率减少。在max模式下,当检测值不再上升则触发学习率减少。 # epsilon:阈值,用来确定是否进入检测值的“平原区” # cooldown:学习率减少后,会经过cooldown个epoch才重新进行正常操作 # min_lr:学习率的下限 learning_rate_reduction = ReduceLROnPlateau(monitor = 'val_acc', patience = 3, verbose = 1, factor=0.5, min_lr = 0.00001)
epochs = 40 batch_size = 100
数据增强处理
# 数据增强处理,提升模型的泛化能力,也可以有效的避免模型的过拟合 # rotation_range : 旋转的角度 # zoom_range : 随机缩放图像 # width_shift_range : 水平移动占图像宽度的比例 # height_shift_range # horizontal_filp : 水平反转 # vertical_filp : 纵轴方向上反转 data_augment = ImageDataGenerator(rotation_range= 10,zoom_range= 0.1, width_shift_range = 0.1,height_shift_range = 0.1, horizontal_flip = False, vertical_flip = False)
训练模型
history = model.fit_generator(data_augment.flow(train_x, train_y, batch_size=batch_size), epochs= epochs, validation_data = (val_x,val_y), verbose =2, steps_per_epoch=train_x.shape[0]//batch_size, callbacks=[learning_rate_reduction])
Epoch 1/40 359s - loss: 0.4529 - acc: 0.8498 - val_loss: 0.0658 - val_acc: 0.9793 Epoch 2/40 375s - loss: 0.1188 - acc: 0.9637 - val_loss: 0.0456 - val_acc: 0.9848 Epoch 3/40 374s - loss: 0.0880 - acc: 0.9734 - val_loss: 0.0502 - val_acc: 0.9845 Epoch 4/40 375s - loss: 0.0750 - acc: 0.9767 - val_loss: 0.0318 - val_acc: 0.9902 Epoch 5/40 374s - loss: 0.0680 - acc: 0.9800 - val_loss: 0.0379 - val_acc: 0.9888 Epoch 6/40 369s - loss: 0.0584 - acc: 0.9823 - val_loss: 0.0267 - val_acc: 0.9910 Epoch 7/40 381s - loss: 0.0556 - acc: 0.9832 - val_loss: 0.0505 - val_acc: 0.9824 Epoch 8/40 381s - loss: 0.0531 - acc: 0.9842 - val_loss: 0.0236 - val_acc: 0.9912 Epoch 9/40 376s - loss: 0.0534 - acc: 0.9839 - val_loss: 0.0310 - val_acc: 0.9910 Epoch 10/40 379s - loss: 0.0537 - acc: 0.9848 - val_loss: 0.0274 - val_acc: 0.9917 Epoch 11/40 375s - loss: 0.0501 - acc: 0.9856 - val_loss: 0.0254 - val_acc: 0.9931 Epoch 12/40 382s - loss: 0.0492 - acc: 0.9860 - val_loss: 0.0212 - val_acc: 0.9924 Epoch 13/40 380s - loss: 0.0482 - acc: 0.9864 - val_loss: 0.0259 - val_acc: 0.9919 Epoch 14/40 373s - loss: 0.0488 - acc: 0.9858 - val_loss: 0.0305 - val_acc: 0.9905 Epoch 15/40 Epoch 00014: reducing learning rate to 0.000500000023749. 370s - loss: 0.0493 - acc: 0.9853 - val_loss: 0.0259 - val_acc: 0.9919 Epoch 16/40 367s - loss: 0.0382 - acc: 0.9888 - val_loss: 0.0176 - val_acc: 0.9936 Epoch 17/40 376s - loss: 0.0376 - acc: 0.9891 - val_loss: 0.0187 - val_acc: 0.9945 Epoch 18/40 376s - loss: 0.0410 - acc: 0.9885 - val_loss: 0.0220 - val_acc: 0.9926 Epoch 19/40 371s - loss: 0.0385 - acc: 0.9886 - val_loss: 0.0194 - val_acc: 0.9933 Epoch 20/40 372s - loss: 0.0345 - acc: 0.9894 - val_loss: 0.0186 - val_acc: 0.9938 Epoch 21/40 Epoch 00020: reducing learning rate to 0.000250000011874. 375s - loss: 0.0395 - acc: 0.9888 - val_loss: 0.0233 - val_acc: 0.9945 Epoch 22/40 369s - loss: 0.0313 - acc: 0.9907 - val_loss: 0.0141 - val_acc: 0.9955 Epoch 23/40 376s - loss: 0.0308 - acc: 0.9910 - val_loss: 0.0187 - val_acc: 0.9945 Epoch 24/40 374s - loss: 0.0331 - acc: 0.9908 - val_loss: 0.0170 - val_acc: 0.9940 Epoch 25/40 372s - loss: 0.0325 - acc: 0.9904 - val_loss: 0.0166 - val_acc: 0.9948 Epoch 26/40 Epoch 00025: reducing learning rate to 0.000125000005937. 373s - loss: 0.0319 - acc: 0.9904 - val_loss: 0.0167 - val_acc: 0.9943 Epoch 27/40 372s - loss: 0.0285 - acc: 0.9915 - val_loss: 0.0138 - val_acc: 0.9950 Epoch 28/40 375s - loss: 0.0280 - acc: 0.9913 - val_loss: 0.0150 - val_acc: 0.9950 Epoch 29/40 Epoch 00028: reducing learning rate to 6.25000029686e-05. 377s - loss: 0.0281 - acc: 0.9924 - val_loss: 0.0158 - val_acc: 0.9948 Epoch 30/40 374s - loss: 0.0265 - acc: 0.9920 - val_loss: 0.0134 - val_acc: 0.9952 Epoch 31/40 378s - loss: 0.0270 - acc: 0.9922 - val_loss: 0.0128 - val_acc: 0.9957 Epoch 32/40 372s - loss: 0.0237 - acc: 0.9930 - val_loss: 0.0133 - val_acc: 0.9957 Epoch 33/40 375s - loss: 0.0237 - acc: 0.9931 - val_loss: 0.0138 - val_acc: 0.9955 Epoch 34/40 371s - loss: 0.0276 - acc: 0.9920 - val_loss: 0.0135 - val_acc: 0.9962 Epoch 35/40 373s - loss: 0.0259 - acc: 0.9920 - val_loss: 0.0136 - val_acc: 0.9952 Epoch 36/40 369s - loss: 0.0249 - acc: 0.9924 - val_loss: 0.0126 - val_acc: 0.9952 Epoch 37/40 370s - loss: 0.0257 - acc: 0.9923 - val_loss: 0.0130 - val_acc: 0.9960 Epoch 38/40 Epoch 00037: reducing learning rate to 3.12500014843e-05. 374s - loss: 0.0252 - acc: 0.9926 - val_loss: 0.0136 - val_acc: 0.9950 Epoch 39/40 372s - loss: 0.0246 - acc: 0.9927 - val_loss: 0.0134 - val_acc: 0.9957 Epoch 40/40 371s - loss: 0.0247 - acc: 0.9929 - val_loss: 0.0139 - val_acc: 0.9950
在训练过程当中,有几次触发学习效率衰减的条件,每当val_acc连续3轮没有增长,就会把学习效率调整为当前的一半,调整之后,val_acc都有明显的增长,但是在最后几轮,模型可能已经收敛.
# learning curves fig,ax = plt.subplots(2,1,figsize=(10,10)) ax[0].plot(history.history['loss'], color='r', label='Training Loss') ax[0].plot(history.history['val_loss'], color='g', label='Validation Loss') ax[0].legend(loc='best',shadow=True) ax[0].grid(True) ax[1].plot(history.history['acc'], color='r', label='Training Accuracy') ax[1].plot(history.history['val_acc'], color='g', label='Validation Accuracy') ax[1].legend(loc='best',shadow=True) ax[1].grid(True)
# 混淆矩阵 def plot_sonfusion_matrix(cm, classes, normalize=False, title='Confusion matrix',cmap=plt.cm.Blues): plt.imshow(cm, interpolation='nearest', cmap=cmap) plt.title(title) plt.colorbar() tick_marks = np.arange(len(classes)) plt.xticks(tick_marks, classes, rotation=45) plt.yticks(tick_marks, classes) if normalize: cm = cm.astype('float')/cm.sum(axis=1)[:,np.newaxis] thresh = cm.max()/2.0 for i,j in itertools.product(range(cm.shape[0]), range(cm.shape[1])): plt.text(j,i,cm[i,j], horizontalalignment='center',color='white' if cm[i,j] > thresh else 'black') plt.tight_layout() plt.ylabel('True label') plt.xlabel('Predict label')
验证数据的混淆举证
pred_y = model.predict(val_x) pred_label = np.argmax(pred_y, axis=1) true_label = np.argmax(val_y, axis=1) confusion_mat = confusion_matrix(true_label, pred_label) plot_sonfusion_matrix(confusion_mat, classes = range(10))
关于Keras怎样实现CNN就分享到这里了,希望以上内容可以对大家有一定的帮助,可以学到更多知识。如果觉得文章不错,可以把它分享出去让更多的人看到。
当前题目:Keras怎样实现CNN
网页链接:http://scyanting.com/article/pscpps.html