怎么将Scikit-learnPython库用于数据科学项目

这篇文章主要为大家展示了“怎么将Scikit-learn Python库用于数据科学项目”,内容简而易懂,条理清晰,希望能够帮助大家解决疑惑,下面让小编带领大家一起研究并学习一下“怎么将Scikit-learn Python库用于数据科学项目”这篇文章吧。

为五常等地区用户提供了全套网页设计制作服务,及五常网站建设行业解决方案。主营业务为成都网站设计、成都网站建设、五常网站设计,以传统方式定制建设网站,并提供域名空间备案等一条龙服务,秉承以专业、用心的态度为用户提供真诚的服务。我们深信只要达到每一位用户的要求,就会得到认可,从而选择与我们长期合作。这样,我们也可以走得更远!

什么是 Scikit-learn?

Scikit-learn 是一个开源 Python 库,拥有强大的数据分析和数据挖掘工具。 在 BSD 许可下可用,并建立在以下机器学习库上:

  • NumPy,一个用于操作多维数组和矩阵的库。它还具有广泛的数学函数汇集,可用于执行各种计算。

  • SciPy,一个由各种库组成的生态系统,用于完成技术计算任务。

  • Matplotlib,一个用于绘制各种图表和图形的库。

Scikit-learn 提供了广泛的内置算法,可以充分用于数据科学项目。

以下是使用 Scikit-learn 库的主要方法。

1、分类

分类工具识别与提供的数据相关联的类别。例如,它们可用于将电子邮件分类为垃圾邮件或非垃圾邮件。

Scikit-learn 中的分类算法包括:

  • 支持向量机Support vector machines

    (SVM)

  • 最邻近Nearest neighbors
  • 随机森林Random forest
2、回归

回归涉及到创建一个模型去试图理解输入和输出数据之间的关系。例如,回归工具可用于理解股票价格的行为。

回归算法包括:

  • 支持向量机Support vector machines

    (SVM)

  • 岭回归Ridge regression
  • Lasso(LCTT 译注:Lasso 即 least absolute shrinkage and selection operator,又译为最小绝对值收敛和选择算子、套索算法)

3、聚类

Scikit-learn 聚类工具用于自动将具有相同特征的数据分组。 例如,可以根据客户数据的地点对客户数据进行细分。

聚类算法包括:

  • K-means

  • 谱聚类Spectral clustering
  • Mean-shift

4、降维

降维降低了用于分析的随机变量的数量。例如,为了提高可视化效率,可能不会考虑外围数据。

降维算法包括:

  • 主成分分析Principal component analysis

    (PCA)

  • 功能选择Feature selection
  • 非负矩阵分解Non-negative matrix factorization
5、模型选择

模型选择算法提供了用于比较、验证和选择要在数据科学项目中使用的***参数和模型的工具。

通过参数调整能够增强精度的模型选择模块包括:

  • 网格搜索Grid search
  • 交叉验证Cross-validation
  • 指标Metrics
6、预处理

Scikit-learn 预处理工具在数据分析期间的特征提取和规范化中非常重要。 例如,您可以使用这些工具转换输入数据(如文本)并在分析中应用其特征。

预处理模块包括:

  • 预处理

  • 特征提取

Scikit-learn 库示例

让我们用一个简单的例子来说明如何在数据科学项目中使用 Scikit-learn 库。

我们将使用鸢尾花花卉数据集,该数据集包含在 Scikit-learn 库中。 鸢尾花数据集包含有关三种花种的 150 个细节,三种花种分别为:

  • Setosa:标记为 0

  • Versicolor:标记为 1

  • Virginica:标记为 2

数据集包括每种花种的以下特征(以厘米为单位):

  • 萼片长度

  • 萼片宽度

  • 花瓣长度

  • 花瓣宽度

第 1 步:导入库

由于鸢尾花花卉数据集包含在 Scikit-learn 数据科学库中,我们可以将其加载到我们的工作区中,如下所示:

from sklearn import datasetsiris = datasets.load_iris()

这些命令从 sklearn 导入数据集 datasets 模块,然后使用 datasets 中的 load_iris() 方法将数据包含在工作空间中。

第 2 步:获取数据集特征

数据集 datasets 模块包含几种方法,使您更容易熟悉处理数据。

在 Scikit-learn 中,数据集指的是类似字典的对象,其中包含有关数据的所有详细信息。 使用 .data 键存储数据,该数据列是一个数组列表。

例如,我们可以利用 iris.data 输出有关鸢尾花花卉数据集的信息。

print(iris.data)

这是输出(结果已被截断):

[[5.1 3.5 1.4 0.2] [4.9 3.  1.4 0.2] [4.7 3.2 1.3 0.2] [4.6 3.1 1.5 0.2] [5.  3.6 1.4 0.2] [5.4 3.9 1.7 0.4] [4.6 3.4 1.4 0.3] [5.  3.4 1.5 0.2] [4.4 2.9 1.4 0.2] [4.9 3.1 1.5 0.1] [5.4 3.7 1.5 0.2] [4.8 3.4 1.6 0.2] [4.8 3.  1.4 0.1] [4.3 3.  1.1 0.1] [5.8 4.  1.2 0.2] [5.7 4.4 1.5 0.4] [5.4 3.9 1.3 0.4] [5.1 3.5 1.4 0.3]

我们还使用 iris.target 向我们提供有关花朵不同标签的信息。

print(iris.target)

这是输出:

[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2]

如果我们使用 iris.target_names,我们将输出数据集中找到的标签名称的数组。

print(iris.target_names)

以下是运行 Python 代码后的结果:

['setosa' 'versicolor' 'virginica']
第 3 步:可视化数据集

我们可以使用箱形图来生成鸢尾花数据集的视觉描绘。 箱形图说明了数据如何通过四分位数在平面上分布的。

以下是如何实现这一目标:

import seaborn as snsbox_data = iris.data  # 表示数据数组的变量box_target = iris.target  # 表示标签数组的变量sns.boxplot(data = box_data,width=0.5,fliersize=5)sns.set(rc={'figure.figsize':(2,15)})

让我们看看结果:

怎么将Scikit-learn Python库用于数据科学项目

在横轴上:

  • 0 是萼片长度

  • 1 是萼片宽度

  • 2 是花瓣长度

  • 3 是花瓣宽度

垂直轴的尺寸以厘米为单位。

总结

以下是这个简单的 Scikit-learn 数据科学教程的完整代码。

from sklearn import datasetsiris = datasets.load_iris()print(iris.data)print(iris.target)print(iris.target_names)import seaborn as snsbox_data = iris.data  # 表示数据数组的变量box_target = iris.target  # 表示标签数组的变量sns.boxplot(data = box_data,width=0.5,fliersize=5)sns.set(rc={'figure.figsize':(2,15)})

以上是“怎么将Scikit-learn Python库用于数据科学项目”这篇文章的所有内容,感谢各位的阅读!相信大家都有了一定的了解,希望分享的内容对大家有所帮助,如果还想学习更多知识,欢迎关注创新互联行业资讯频道!


网站题目:怎么将Scikit-learnPython库用于数据科学项目
当前路径:http://scyanting.com/article/psjchg.html