mysql查询优化怎么做 mysql查询优化,索引优化,存储优化

MySql中LongText类型大字段查询优化

1.mysql在操作数据的时候,以page为单位

目前创新互联建站已为上千的企业提供了网站建设、域名、虚拟主机网站托管运营、企业网站设计、桦南网站维护等服务,公司将坚持客户导向、应用为本的策略,正道将秉承"和谐、参与、激情"的文化,与客户和合作伙伴齐心协力一起成长,共同发展。

  不管是更新,插入,删除一行数据,都需要将那行数据所在的page读到内存中,然后在进行操作,这样就存在一个命中率的问题,如果一个page中能够相对的存放足够多的行,那么命中率就会相对高一些,性能就会有提升

2.innodb的page大小默认为16kb

  innodb存储引擎表为索引组织表,树底层的叶子节点为一双向链表,因此每个页中至少应该有两行记录,这就决定了innodb在存储一行数据的时候不能够超过8k,但事实上应该更小,有一些InnoDB内部数据结构要存储以及预留操作空间,

3.blob,text大字段

  innodb只会存放前768字节在数据页中,而剩余的数据则会存储在溢出段中(发生溢出情况的时候适用),最大768字节的作用是便于创建前缀索引/prefix index,其余更多的内容存储在额外的page里,哪怕只是多了一个字节。因此,所有列长度越短越好

4.扩展存储禁用了自适应哈希

  因为需要完整的比较列的整个长度,才能发现是不是正确的数据(哈希帮助InnoDB非常快速的找到“猜测的位置”,但是必须检查“猜测的位置”是不是正确)。因为自适应哈希是完全的内存结构,并且直接指向Buffer Pool中访问“最”频繁的页面,但对于扩展存储空间却无法使用Adaptive Hash

变长大字段类型包括blob,text,varchar,其中varchar列值长度大于某数N时也会存溢出页,在latin1字符集下N值可以这样计算:innodb的块大小默认为16kb,由于innodb存储引擎表为索引组织表,树底层的叶子节点为一双向链表,因此每个页中至少应该有两行记录,这就决定了innodb在存储一行数据的时候不能够超过8k,减去其它列值所占字节数,约等于N。对于InnoDB,内存是极为珍贵的,如果把768字节长度的blob都放在数据页,虽然可以节省部分IO,但是能缓存行数就变少,也就是能缓存的索引值变少了,降低了索引效率

Mysql把每个BLOB和TEXT值当作一个独立的对象处理。存储引擎在存储时通常会做特殊处理。当BLOB和TEXT值太大时,InnoDB会使用专门的“外部”储存区域来进行存储,此时每个值在行内需要1~4个字节存储一个指针,然后在内部存储区域存储实际的值。

Mysql不能将BLOB和TEXT列全部长度的字符串进行索引

mysql的 io 以page为单位,因此不必要的数据(大字段)也会随着需要操作的数据一同被读取到内存中来,这样带来的问题由于大字段会占用较大的内存(相比其他小字段),使得内存利用率较差,造成更多的随机读取。从上面的分析来看,我们已经看到性能的瓶颈在于由于大字段存放在数据页中,造成了内存利用较差,带来过多的随机读,那怎么来优化掉这个大字段的影响

5.6版本以后,新增选项 innodb_page_size 可以修改innodb的page默认大小,但并不推荐修改这个配置

5.6版本之后mysql新增索引FULLTEXT可用来增加大文本搜索速度

【Mysql】查询优化——减少回表操作

  聚集索引:数据行的物理顺序与列值(一般是主键的那一列)的逻辑顺序相同,一个表中只能拥有一个聚集索引。 叶子结点存储索引和行记录,聚簇索引查询会很快,因为可以直接定位到行记录。

  非聚集索引:该索引中索引的逻辑顺序与磁盘上行的物理存储顺序不同,一个表中可以拥有多个非聚集索引。 叶子节点存储聚簇索引值(主键id),需要扫码两遍索引树,先通过普通索引定位到主键值id,再通过聚集索引定位到行记录。

  回表查询可以理解为普通索引的查询,先定位主键值,再定位行记录,它的性能较扫一遍索引树更低。

  索引覆盖,即将查询sql中的字段添加到联合索引里面,只要保证查询语句里面的字段都在索引文件中,就无需进行回表查询;

  实际开发中,不可能把所有字段建立到联合索引,可根据实际业务场景,把经常需要查询的字段建立到联合索引中。

   在Mysql5.6的版本上推出,用于优化查询。 在索引遍历过程中,对索引中包含的字段先做判断,直接过滤掉不满足条件的记录,减少回表次数。

   优化超多分页场景。 查询条件放到子查询中,子查询只查主键id,然后使用子查询中确定的主键关联查询其他的属性字段。

mysql查询优化器应该怎么使用

在开始演示之前,我们先介绍下两个概念。

概念一,数据的可选择性基数,也就是常说的cardinality值。

查询优化器在生成各种执行计划之前,得先从统计信息中取得相关数据,这样才能估算每步操作所涉及到的记录数,而这个相关数据就是cardinality。简单来说,就是每个值在每个字段中的唯一值分布状态。

比如表t1有100行记录,其中一列为f1。f1中唯一值的个数可以是100个,也可以是1个,当然也可以是1到100之间的任何一个数字。这里唯一值越的多少,就是这个列的可选择基数。

那看到这里我们就明白了,为什么要在基数高的字段上建立索引,而基数低的的字段建立索引反而没有全表扫描来的快。当然这个只是一方面,至于更深入的探讨就不在我这篇探讨的范围了。

概念二,关于HINT的使用。

这里我来说下HINT是什么,在什么时候用。

HINT简单来说就是在某些特定的场景下人工协助MySQL优化器的工作,使她生成最优的执行计划。一般来说,优化器的执行计划都是最优化的,不过在某些特定场景下,执行计划可能不是最优化。

比如:表t1经过大量的频繁更新操作,(UPDATE,DELETE,INSERT),cardinality已经很不准确了,这时候刚好执行了一条SQL,那么有可能这条SQL的执行计划就不是最优的。为什么说有可能呢?

来看下具体演示

譬如,以下两条SQL,

A:

select * from t1 where f1 = 20;

B:

select * from t1 where f1 = 30;

如果f1的值刚好频繁更新的值为30,并且没有达到MySQL自动更新cardinality值的临界值或者说用户设置了手动更新又或者用户减少了sample page等等,那么对这两条语句来说,可能不准确的就是B了。

这里顺带说下,MySQL提供了自动更新和手动更新表cardinality值的方法,因篇幅有限,需要的可以查阅手册。

那回到正题上,MySQL 8.0 带来了几个HINT,我今天就举个index_merge的例子。

示例表结构:

mysql desc t1;+------------+--------------+------+-----+---------+----------------+| Field      | Type         | Null | Key | Default | Extra          |+------------+--------------+------+-----+---------+----------------+| id         | int(11)      | NO   | PRI | NULL    | auto_increment || rank1      | int(11)      | YES  | MUL | NULL    |                || rank2      | int(11)      | YES  | MUL | NULL    |                || log_time   | datetime     | YES  | MUL | NULL    |                || prefix_uid | varchar(100) | YES  |     | NULL    |                || desc1      | text         | YES  |     | NULL    |                || rank3      | int(11)      | YES  | MUL | NULL    |                |+------------+--------------+------+-----+---------+----------------+7 rows in set (0.00 sec)

表记录数:

mysql select count(*) from t1;+----------+| count(*) |+----------+|    32768 |+----------+1 row in set (0.01 sec)

这里我们两条经典的SQL:

SQL C:

select * from t1 where rank1 = 1 or rank2 = 2 or rank3 = 2;

SQL D:

select * from t1 where rank1 =100  and rank2 =100  and rank3 =100;

表t1实际上在rank1,rank2,rank3三列上分别有一个二级索引。

那我们来看SQL C的查询计划。

显然,没有用到任何索引,扫描的行数为32034,cost为3243.65。

mysql explain  format=json select * from t1  where rank1 =1 or rank2 = 2 or rank3 = 2\G*************************** 1. row ***************************EXPLAIN: {  "query_block": {    "select_id": 1,    "cost_info": {      "query_cost": "3243.65"    },    "table": {      "table_name": "t1",      "access_type": "ALL",      "possible_keys": [        "idx_rank1",        "idx_rank2",        "idx_rank3"      ],      "rows_examined_per_scan": 32034,      "rows_produced_per_join": 115,      "filtered": "0.36",      "cost_info": {        "read_cost": "3232.07",        "eval_cost": "11.58",        "prefix_cost": "3243.65",        "data_read_per_join": "49K"      },      "used_columns": [        "id",        "rank1",        "rank2",        "log_time",        "prefix_uid",        "desc1",        "rank3"      ],      "attached_condition": "((`ytt`.`t1`.`rank1` = 1) or (`ytt`.`t1`.`rank2` = 2) or (`ytt`.`t1`.`rank3` = 2))"    }  }}1 row in set, 1 warning (0.00 sec)

我们加上hint给相同的查询,再次看看查询计划。

这个时候用到了index_merge,union了三个列。扫描的行数为1103,cost为441.09,明显比之前的快了好几倍。

mysql explain  format=json select /*+ index_merge(t1) */ * from t1  where rank1 =1 or rank2 = 2 or rank3 = 2\G*************************** 1. row ***************************EXPLAIN: {  "query_block": {    "select_id": 1,    "cost_info": {      "query_cost": "441.09"    },    "table": {      "table_name": "t1",      "access_type": "index_merge",      "possible_keys": [        "idx_rank1",        "idx_rank2",        "idx_rank3"      ],      "key": "union(idx_rank1,idx_rank2,idx_rank3)",      "key_length": "5,5,5",      "rows_examined_per_scan": 1103,      "rows_produced_per_join": 1103,      "filtered": "100.00",      "cost_info": {        "read_cost": "330.79",        "eval_cost": "110.30",        "prefix_cost": "441.09",        "data_read_per_join": "473K"      },      "used_columns": [        "id",        "rank1",        "rank2",        "log_time",        "prefix_uid",        "desc1",        "rank3"      ],      "attached_condition": "((`ytt`.`t1`.`rank1` = 1) or (`ytt`.`t1`.`rank2` = 2) or (`ytt`.`t1`.`rank3` = 2))"    }  }}1 row in set, 1 warning (0.00 sec)

我们再看下SQL D的计划:

不加HINT,

mysql explain format=json select * from t1 where rank1 =100 and rank2 =100 and rank3 =100\G*************************** 1. row ***************************EXPLAIN: {  "query_block": {    "select_id": 1,    "cost_info": {      "query_cost": "534.34"    },    "table": {      "table_name": "t1",      "access_type": "ref",      "possible_keys": [        "idx_rank1",        "idx_rank2",        "idx_rank3"      ],      "key": "idx_rank1",      "used_key_parts": [        "rank1"      ],      "key_length": "5",      "ref": [        "const"      ],      "rows_examined_per_scan": 555,      "rows_produced_per_join": 0,      "filtered": "0.07",      "cost_info": {        "read_cost": "478.84",        "eval_cost": "0.04",        "prefix_cost": "534.34",        "data_read_per_join": "176"      },      "used_columns": [        "id",        "rank1",        "rank2",        "log_time",        "prefix_uid",        "desc1",        "rank3"      ],      "attached_condition": "((`ytt`.`t1`.`rank3` = 100) and (`ytt`.`t1`.`rank2` = 100))"    }  }}1 row in set, 1 warning (0.00 sec)

加了HINT,

mysql explain format=json select /*+ index_merge(t1)*/ * from t1 where rank1 =100 and rank2 =100 and rank3 =100\G*************************** 1. row ***************************EXPLAIN: {  "query_block": {    "select_id": 1,    "cost_info": {      "query_cost": "5.23"    },    "table": {      "table_name": "t1",      "access_type": "index_merge",      "possible_keys": [        "idx_rank1",        "idx_rank2",        "idx_rank3"      ],      "key": "intersect(idx_rank1,idx_rank2,idx_rank3)",      "key_length": "5,5,5",      "rows_examined_per_scan": 1,      "rows_produced_per_join": 1,      "filtered": "100.00",      "cost_info": {        "read_cost": "5.13",        "eval_cost": "0.10",        "prefix_cost": "5.23",        "data_read_per_join": "440"      },      "used_columns": [        "id",        "rank1",        "rank2",        "log_time",        "prefix_uid",        "desc1",        "rank3"      ],      "attached_condition": "((`ytt`.`t1`.`rank3` = 100) and (`ytt`.`t1`.`rank2` = 100) and (`ytt`.`t1`.`rank1` = 100))"    }  }}1 row in set, 1 warning (0.00 sec)

对比下以上两个,加了HINT的比不加HINT的cost小了100倍。

总结下,就是说表的cardinality值影响这张的查询计划,如果这个值没有正常更新的话,就需要手工加HINT了。相信MySQL未来的版本会带来更多的HINT。


本文题目:mysql查询优化怎么做 mysql查询优化,索引优化,存储优化
转载来于:http://scyanting.com/article/dogeegd.html